矩阵

矩阵

矩阵乘法

A = [ a i j ] m × s A=[a_{ij}]_{m\times s} A=[aij]m×s , B = [ b i j ] s × n B=[b_{ij}]_{s\times n} B=[bij]s×n

A B = C = [ c i j ] m × n AB=C=[c_{ij}]_{m\times n} AB=C=[cij]m×n
[ c i j ] m × n = a i 1 b 1 j + a i 2 b 2 j + … + a i s b s j = ∑ k = 1 s a i k b k j [c_{ij}]_{m\times n}=a_{i1}b_{1j}+a_{i2}b_{2j}+…+a_{is}b_{sj}=\sum\limits_{k=1}^s a_{ik}b_{kj} [cij]m×n=ai1b1j+ai2b2j++aisbsj=k=1saikbkj
A B C = ( A B ) C = A ( B C ) ABC=(AB)C=A(BC) ABC=(AB)C=A(BC)
A ( B + C ) = A B + B C A(B+C)=AB+BC A(B+C)=AB+BC
A E = A AE=A AE=A
E A = A EA=A EA=A
A B ≠ B A AB\neq BA AB=BA
A B = 0 ⇏ A = 0 或 B = 0 AB=0\nRightarrow A=0或B=0 AB=0A=0B=0
A B = A C 且 A ≠ 0 ⇏ B = C AB=AC且A\neq 0\nRightarrow B=C AB=ACA=0B=C

注意矩阵数乘与行列式数乘区别
k [ a b c d ] = [ k a k b k c k d ] k\left[ \begin{matrix} a & b \\ c & d \\ \end{matrix} \right]=\left[ \begin{matrix} ka & kb \\ kc & kd \\ \end{matrix} \right] k[acbd]=[kakckbkd]

k ∣ a b c d ∣ = ∣ k a b k c d ∣ = ∣ k a k b c d ∣ k\left| \begin{matrix} a & b \\ c & d \\ \end{matrix} \right|=\left| \begin{matrix} ka & b \\ kc & d \\ \end{matrix} \right|=\left| \begin{matrix} ka & kb \\ c & d \\ \end{matrix} \right| kacbd=kakcbd=kackbd

矩阵完全平方展开式和平方差公式

( A + B ) 2 = A 2 + A B + B A + B 2 (A+B)^2=A^2+AB+BA+B^2 (A+B)2=A2+AB+BA+B2
( A + B ) ( A + B ) = A 2 − A B + B A − B 2 (A+B)(A+B)=A^2-AB+BA-B^2 (A+B)(A+B)=A2AB+BAB2
( A + E ) 2 = A 2 + 2 A + E (A+E)^2=A^2+2A+E (A+E)2=A2+2A+E
( A + E ) ( A − E ) = ( A − E ) ( A + E ) = A 2 − E (A+E)(A-E)=(A-E)(A+E)=A^2-E (A+E)(AE)=(AE)(A+E)=A2E

转置矩阵

  设 A = [ a i j ] m × n A=[a_{ij}]_{m\times n} A=[aij]m×n A A A的行列互换得到 n × m n\times m n×m的矩阵 A = [ a i j ] n × m A=[a_{ij}]_{n\times m} A=[aij]n×m称为 A A A转置矩阵,记为 A T A^T AT

( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( k A ) T = k A T (kA)^T=kA^T (kA)T=kAT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
( A T ) T = A (A^T)^T=A (AT)T=A

对称矩阵和反对称矩阵

 设 A = [ a i j ] m × n A=[a_{ij}]_{m\times n} A=[aij]m×n A T = A A^T=A AT=A a i j = a j i ( ∀ i , j ) a_{ij}=a_{ji}(\forall i,j) aij=aji(i,j)称为对称矩阵。若 A T = − A A^T=-A AT=A a i j = − a j i ( ∀ i , j ) a_{ij}=-a_{ji}(\forall i,j) aij=aji(i,j)称为反对称矩阵
A = α α T A=\alpha \alpha^T A=ααT
A T = ( α α T ) T = ( α T ) T α T = α α T = A A^T=(\alpha \alpha^T)^T= (\alpha^T)^T\alpha^T =\alpha \alpha^T=A AT=(ααT)T=(αT)TαT=ααT=A

行在前列在后必为数
α α T = [ a b c ] [ a b c ] = a 2 + b 2 + c 2 \alpha\alpha^T=\left[\begin{matrix} a&b&c\\ \end{matrix}\right]\left[\begin{matrix} a\\ b\\ c\\ \end{matrix}\right]=a^2+b^2+c^2 ααT=[abc]abc=a2+b2+c2

列在前行在后必为矩阵
α α T = [ a b c ] [ a b c ] = [ a 2 a b a c a b b 2 b c a c b c c 2 ] \alpha\alpha^T=\left[\begin{matrix} a\\ b\\ c\\ \end{matrix}\right]\left[\begin{matrix} a&b&c\\ \end{matrix}\right]=\left[\begin{matrix} a^2&ab&ac\\ ab&b^2&bc\\ ac&bc&c^2\\ \end{matrix}\right] ααT=abc[abc]=a2abacabb2bcacbcc2

方阵行列式公式

∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB
∣ A n ∣ = ∣ A ∣ n |A^n|=|A|^n An=An

可逆矩阵

  对于 n n n阶矩阵 A A A ∃ n \exist n n阶矩阵 B B B使 A B = B A = E AB=BA=E AB=BA=E则称矩阵 A A A是可逆的且称 B B B A A A的逆矩阵

A A − 1 = E AA^{-1}=E AA1=E
( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
( k A ) − 1 = 1 k A − 1 (kA)^{-1}=\frac1 k A^{-1} (kA)1=k1A1
( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
( A B C ) − 1 = C − 1 B − 1 A − 1 (ABC)^{-1}=C^{-1}B^{-1}A^{-1} (ABC)1=C1B1A1
( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1}=(A^{-1})^{T} (AT)1=(A1)T
A 可 逆    ⟺    ∣ A ∣ ≠ 0 A可逆\iff|A|\neq 0 AA=0
A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac {A^*} {|A|} A1=AA

二阶矩阵的求逆公式
A = ∣ a b c d ∣ A=\left| \begin{matrix} a & b \\ c & d \\ \end{matrix} \right| A=acbd
A − 1 = 1 a d − b c ∣ d − b − c a ∣ A^{-1}=\frac 1{ad-bc}\left| \begin{matrix} d & -b \\ -c & a \\ \end{matrix} \right| A1=adbc1dcba
主对角线互换,副对角线取负

求逆矩阵的两种重要方法
1. A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac {A^*} {|A|} A1=AA
2.初等变化
P t . . . P 2 P 1 A = E P_t...P_2P_1A=E Pt...P2P1A=E
P t . . . P 2 P 1 E = A − 1 P_t...P_2P_1E=A^{-1} Pt...P2P1E=A1
上式表明 A A A E E E的初等行变换等价于 E E E A − 1 A^{-1} A1的行变换
( A ∣ E ) → . . . → ( E ∣ A − 1 ) (A|E)\to...\to(E|A^{-1}) (AE)...(EA1)

伴随矩阵

   A − n A-n An阶矩阵,行列式 ∣ A ∣ |A| A所有的代数余子式 A i j A_{ij} Aij所构成如下矩阵:
A ∗ = [ A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 : : : A 1 n A 2 n . . . A n n ] A^*=\left[ \begin{matrix} A_{11} & A_{21} &... & A_{n1}\\ A_{12} & A_{22 }&...& A_{n2}\\ :&:&&:\\ A_{1n}&A_{2n}&...& A_{nn} \end{matrix} \right] A=A11A12:A1nA21A22:A2n.........An1An2:Ann称其为矩阵 A A A伴随矩阵

A i j = ( − 1 ) i + j ∣ A i j ∣ A_{ij}=(-1)^{i+j}|A_{ij}| Aij=(1)i+jAij

( k A ) ∗ = k n − 1 A ∗ (kA)^*=k^{n-1}A^* (kA)=kn1A
( A B ) ∗ = B ∗ A ∗ (AB)^*=B^*A^* (AB)=BA
( A T ) ∗ = ( A ∗ ) T (A^T)^*=(A^*)^T (AT)=(A)T
( A − 1 ) ∗ = ( A ∗ ) − 1 = A ∣ A ∣ − 1 ( A 可 逆 ) (A^{-1})^*=(A^*)^{-1}=A|A|^{-1}(A可逆) (A1)=(A)1=AA1(A)
( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n > 2 ) (A^*)^*=|A|^{n-2}A(n>2) (A)=An2A(n>2)
∣ A ∣ = 0 |A|=0 A=0,则 ∣ A ∗ ∣ = 0 |A^*|=0 A=0
∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^*|=|A|^{n-1} A=An1
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE
r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)=\left\{ \begin{array}{l} n, r(A)=n \\ 1,r(A)=n-1\\0,r(A)<n-1 \end{array} \right. r(A)=n,r(A)=n1,r(A)=n10,r(A)<n1

对角矩阵

[ a 1 0 0 0 a 2 0 0 0 a 3 ] \left[ \begin{matrix} a_1 & 0&0 \\ 0 & a_2&0 \\ 0&0&a_3\\ \end{matrix} \right] a1000a2000a3 [ b 1 0 0 0 b 2 0 0 0 b 3 ] = [ a 1 b 1 0 0 0 a 2 b 2 0 0 0 a 3 b 3 ] \left[ \begin{matrix} b_1 & 0&0 \\ 0 & b_2&0 \\ 0&0&b_3\\ \end{matrix} \right]=\left[ \begin{matrix} a_1b_1 & 0&0 \\ 0 & a_2b_2&0 \\ 0&0&a_3b_3\\ \end{matrix} \right] b1000b2000b3=a1b1000a2b2000a3b3
(1)两个对角矩阵乘法可以交换次序: Λ 1 Λ 2 = Λ 2 Λ 1 \Lambda_1\Lambda_2=\Lambda_2\Lambda_1 Λ1Λ2=Λ2Λ1

(2) [ a 1 0 0 0 a 2 0 0 0 a 3 ] n = [ a 1 n 0 0 0 a 2 n 0 0 0 a 3 n ] {\left[ \begin{matrix} a_1 & 0&0 \\ 0 & a_2&0 \\ 0&0&a_3\\ \end{matrix} \right]}^n=\left[ \begin{matrix} a_1^n & 0&0 \\ 0 & a_2^n&0 \\ 0&0&a_3^n\\ \end{matrix} \right] a1000a2000a3n=a1n000a2n000a3n

(3) [ a 1 0 0 0 a 2 0 0 0 a 3 ] [ 1 a 1 0 0 0 1 a 2 0 0 0 1 a 3 ] = [ 1 0 0 0 1 0 0 0 1 ] ⇒ [ a 1 0 0 0 a 2 0 0 0 a 3 ] − 1 = [ 1 a 1 0 0 0 1 a 2 0 0 0 1 a 3 ] \left[ \begin{matrix} a_1 & 0&0 \\ 0 & a_2&0 \\ 0&0&a_3\\ \end{matrix} \right]\left[ \begin{matrix} \frac 1 {a_1} & 0&0 \\ 0 & \frac 1 {a_2}&0 \\ 0&0& \frac 1 {a_3}\\ \end{matrix} \right]=\left[ \begin{matrix} 1 & 0&0 \\ 0 & 1&0 \\ 0&0&1\\ \end{matrix} \right]\Rightarrow{\left[ \begin{matrix} a_1 & 0&0 \\ 0 & a_2&0 \\ 0&0&a_3\\ \end{matrix} \right]}^{-1}=\left[ \begin{matrix} \frac 1 {a_1} & 0&0 \\ 0 & \frac 1 {a_2}&0 \\ 0&0& \frac 1 {a_3}\\ \end{matrix} \right] a1000a2000a3a11000a21000a31=100010001a1000a2000a31=a11000a21000a31

分块矩阵

[ A B C D ] [ X Y Z W ] = [ A X + B Z A Y + B W C X + D Z C Y + D W ] {\left[ \begin{matrix} A& B \\ C & D \\ \end{matrix} \right]}{\left[ \begin{matrix} X& Y \\ Z & W \\ \end{matrix} \right]}={\left[ \begin{matrix} AX+BZ& AY+BW \\ CX+DZ & CY+DW \\ \end{matrix} \right]} [ACBD][XZYW]=[AX+BZCX+DZAY+BWCY+DW]

[ A B C D ] T = [ A T C T B T D T ] {\left[ \begin{matrix} A& B \\ C & D \\ \end{matrix} \right]}^T=\left[ \begin{matrix} A^T& C^T \\ B^T & D^T \\ \end{matrix} \right] [ACBD]T=[ATBTCTDT]

[ A 0 0 B ] n = [ A n 0 0 B n ] {\left[ \begin{matrix} A& 0 \\ 0 & B \\ \end{matrix} \right]}^{n}=\left[ \begin{matrix} A^n& 0 \\ 0 & B^n \\ \end{matrix} \right] [A00B]n=[An00Bn]

[ A 0 0 B ] − 1 = [ A − 1 0 0 B − 1 ] {\left[ \begin{matrix} A& 0 \\ 0 & B \\ \end{matrix} \right]}^{-1}=\left[ \begin{matrix} A^{-1}& 0 \\ 0 & B^{-1} \\ \end{matrix} \right] [A00B]1=[A100B1]

[ 0 A B 0 ] − 1 = [ 0 B − 1 A − 1 0 ] {\left[ \begin{matrix} 0& A \\ B & 0 \\ \end{matrix} \right]}^{-1}=\left[ \begin{matrix} 0 & B^{-1} \\ A^{-1}& 0 \\ \end{matrix} \right] [0BA0]1=[0A1B10]

初等矩阵

  单位矩阵经一次初等变换所得到的矩阵称为初等矩阵
初等变换:行列互换,倍加,某行乘除 k k k
初等矩阵 P P P左乘矩阵 A A A其乘积 P A PA PA就是矩阵 A A A做一次与 P P P相同的行变换
初等矩阵 P P P右乘矩阵 A A A其乘积 A P AP AP就是矩阵 A A A做一次与 P P P相同的列变换
A = P 1 P 2 = [ 0 1 0 1 0 0 0 0 1 ] [ 1 0 0 0 1 1 0 0 1 ] = [ 0 1 1 1 0 0 0 0 1 ] A=P_1P_2=\left[\begin{matrix} 0&1&0\\ 1&0&0\\ 0&0&1\\ \end{matrix}\right]\left[\begin{matrix} 1&0&0\\ 0&1&1\\ 0&0&1\\ \end{matrix}\right]=\left[\begin{matrix} 0&1&1\\ 1&0&0\\ 0&0&1\\ \end{matrix}\right] A=P1P2=010100001100010011=010100101

[ 1 0 0 0 1 0 0 k 1 ] − 1 = [ 1 0 0 0 1 0 0 − k 1 ] \left[\begin{matrix} 1&0&0\\ 0&1&0\\ 0&k&1\\ \end{matrix}\right]^{-1}=\left[\begin{matrix} 1&0&0\\ 0&1&0\\ 0&-k&1\\ \end{matrix}\right] 10001k0011=10001k001

[ 0 1 0 1 0 0 0 0 1 ] − 1 = [ 0 1 0 1 0 0 0 0 1 ] \left[\begin{matrix} 0&1&0\\ 1&0&0\\ 0&0&1\\ \end{matrix}\right]^{-1}=\left[\begin{matrix} 0&1&0\\ 1&0&0\\ 0&0&1\\ \end{matrix}\right] 0101000011=010100001

[ 1 0 0 0 k 0 0 0 1 ] − 1 = [ 1 0 0 0 1 k 0 0 0 1 ] \left[\begin{matrix} 1&0&0\\ 0&k&0\\ 0&0&1\\ \end{matrix}\right]^{-1}=\left[\begin{matrix} 1&0&0\\ 0&\frac{1} k&0\\ 0&0&1\\ \end{matrix}\right] 1000k00011=1000k10001

由初等变换求方程的解
A X = B AX=B AX=B
A A A可逆, X = A − 1 B X=A^{-1}B X=A1B
P A = E PA=E PA=E( P P P A A A的逆矩阵)
P B = A − 1 B = X PB=A^{-1}B=X PB=A1B=X
P ( A ∣ B ) = ( E ∣ X ) P(A|B)=(E|X) P(AB)=(EX)

矩阵等价

  矩阵 A A A经有限次初等变换成矩阵 B B B就称矩阵 A A A B B B等价记为 A ≅ B A \cong B AB
A ≅ B    ⟺    r ( A ) = r ( B ) ⇏ ∣ A ∣ = ∣ B ∣ 或 ∣ A ∣ ≠ ∣ B ∣ A \cong B\iff r(A)=r(B)\nRightarrow|A|=|B|或|A|\neq|B| ABr(A)=r(B)A=BA=B

行阶梯矩阵

A − m × n A-m\times n Am×n阶矩阵,若满足:
(1)矩阵如有零行则零行都在矩阵底部
(2)每个非零行的主元(即该行最左边的第1个非0元素)所在列的下面元素都是0则称 A A A行阶梯矩阵

行最简矩阵

A − m × n A-m\times n Am×n阶矩阵,若 A A A行阶梯矩阵且满足:
  非零行的主元都是1且主元所在列的其它元素都是0则称 A A A行最简矩阵

矩阵的秩

  在 m × n m\times n m×n矩阵 A A A中,任取 k k k行与 k k k ( k ⩽ m , k ⩽ n ) (k\leqslant m,k\leqslant n) km,kn位于这些行与列的交叉点上的 k 2 k^2 k2个元素按其在原来矩阵 A A A的次序可构成一个 k k k阶行列式称其为矩阵 A A A的一个 k k k阶子式
A − m × n A-m\times n Am×n k k k阶子式 C m k C n k C_m^kC_n^k CmkCnk
  若矩阵 A A A中存在 r r r阶子式不为0, r + 1 r+1 r+1阶(若存在)子式全为0则称矩阵 A A A的秩为 r r r,记成 r ( A ) = r r(A)=r r(A)=r,零矩阵的秩规定为0

秩的性质

1.初等变换转置后矩阵的秩不变
2. 0 ⩽ r ( A m × n ) ⩽ m i n ( m , n ) 0\leqslant r(A_{m\times n})\leqslant min(m,n) 0r(Am×n)min(m,n)
3. r ( A ) = r ( A T ) = r ( A T A ) = r ( A A T ) r(A)=r(A^T)=r(A^TA)=r(AA^T) r(A)=r(AT)=r(ATA)=r(AAT)
4. r ( A + B ) ⩽ r ( A ) + r ( B ) r(A+B)\leqslant r(A)+r(B) r(A+B)r(A)+r(B)
r ( A B ) ⩽ r ( A ) r(AB)\leqslant r(A) r(AB)r(A)
r ( A B ) ⩽ r ( B ) r(AB)\leqslant r(B) r(AB)r(B)
5. r ( k A ) = r ( A ) ( k ≠ 0 ) r(kA)=r(A) (k\neq 0) r(kA)=r(A)(k=0)
r ( A ) = r ( − A ) r(A)=r(-A) r(A)=r(A)
r ( A − E ) = r ( E − A ) r(A-E)=r(E-A) r(AE)=r(EA)
6.若 P , Q P,Q P,Q可逆则
r ( P A Q ) = r ( A ) r ( P A ) = r ( A ) r ( A Q ) = r ( A ) r(PAQ)=r(A)\\ r(PA)=r(A)\\ r(AQ)=r(A)\\ r(PAQ)=r(A)r(PA)=r(A)r(AQ)=r(A)
7. r [ A 0 0 B ] = r ( A ) + r ( B ) r{\left[ \begin{matrix} A& 0 \\ 0 & B \\ \end{matrix} \right]}=r(A)+r(B) r[A00B]=r(A)+r(B)
8. r ( A B ) ⩽ m a x ( r ( A ) , r ( B ) ) ⩽ r ( A , B ) ⩽ r ( A ) + r ( B ) r(AB)\leqslant max(r(A),r(B))\leqslant r(A,B)\leqslant r(A)+r(B) r(AB)max(r(A),r(B))r(A,B)r(A)+r(B)
9.若 A B = O AB=O AB=O,则 r ( A ) + r ( B ) ⩽ n r(A)+r(B) \leqslant n r(A)+r(B)n

正交矩阵

定义 A A A n n n阶矩阵,满足 A A T = A T A = E AA^T=A^TA=E AAT=ATA=E A A A正交矩阵
性质
(1) A A A是正交矩阵    ⟺    A T = A − 1 \iff A^T=A^{-1} AT=A1
(2) A = ( α 1 α 2 α 3 ) A=(\alpha_1\alpha_2\alpha_3) A=(α1α2α3)是正交矩阵    ⟺    α 1 α 2 α 3 \iff\alpha_1\alpha_2\alpha_3 α1α2α3都是单位向量且两两正交( A A A的列向量和行向量都是单位向量且两两正交)
(3)若 A A A是正交矩阵则 ∣ A ∣ = 1 或 − 1 |A|=1或-1 A=11
(4)若 A , B A,B A,B都是正交矩阵,则 A B AB AB也是正交矩阵

定义 e 1 , e 2 , . . . , e n e_1,e_2,...,e_n e1,e2,...,en是向量空间的一个基
( e i , e j ) = { 1 ( i = j ) 0 ( i ≠ j ) (e_i,e_j)=\left\{ \begin{array}{l} 1(i=j) \\ 0(i\neq j) \end{array} \right. (ei,ej)={1(i=j)0(i=j)则称 e 1 , e 2 , . . . , e n e_1,e_2,...,e_n e1,e2,...,en为标准(规范)正交基

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值