热力学
热力学三大定律
热力学第零定律:
如果系统A和B分别与系统C的同一状态处于热平衡,那么系统A和系统B此时也必然处于热平衡
热力学第一定律:
系统从外界吸收的热量,一部分用于增加内能,一部分用于对外做功
Q
=
Δ
U
+
A
Q=\Delta U+A
Q=ΔU+A
理想气体
理想气体状态方程:
1.
p
V
=
M
M
m
o
l
R
T
pV=\frac M {M_{mol}} RT
pV=MmolMRT
2.
p
=
n
k
T
(
k
=
R
N
A
)
,
k
p=nkT(k=\frac R {N_A}) ,k
p=nkT(k=NAR),k称为玻尔兹曼常量
理想气体压强公式: p = 2 3 n ε t ˉ p=\frac 2 3n\bar{\varepsilon_t} p=32nεtˉ
理想气体温度公式: ε t ˉ = 3 2 k T \bar{\varepsilon_t}=\frac 3 2kT εtˉ=23kT
分子平均动能: ε k ˉ = 1 2 m v 2 \bar{\varepsilon_k}=\frac 1 2 mv^2 εkˉ=21mv2
p = 1 3 n m v 2 p=\frac 1 3 nmv^2 p=31nmv2
能量均分定理
能量均分定理:在温度 T T T的平衡状态下,气体分子每个自由度的平均动能都相等,并且等于 1 2 k T \frac 1 2kT 21kT
分子平均总动能: ε ˉ = 1 2 ( t + r ) k T = i 2 k T \bar{\varepsilon}=\frac 1 2(t+r)kT=\frac i 2kT εˉ=21(t+r)kT=2ikT
平动自由度 t t t | 转动自由度 r r r | 自由度 i i i | |
---|---|---|---|
单原子分子 | 3 | 0 | 3 |
双原子分子 | 3 | 2 | 5 |
多原子分子 | 3 | 3 | 6 |
理想气体内能:仅是所有分子的热运动动能的总和
U
=
ν
i
2
R
T
U=\nu \frac i 2RT
U=ν2iRT
理想气体内能变化:
Δ
U
=
ν
i
2
R
Δ
T
\Delta U=\nu \frac i 2R\Delta T
ΔU=ν2iRΔT
ν = M μ \nu = \frac M \mu ν=μM
麦克斯威速率分布律
速率分布函数:
f
(
v
)
=
d
N
N
d
v
f(v)=\frac {dN}{Ndv}
f(v)=NdvdN
f
(
v
)
f(v)
f(v)被称为概率密度
其物理意义:在速率
v
v
v附近,单位速率间隔内的分子数占总分子数的百分比
归一化条件: ∫ 0 N d N N = ∫ 0 ∞ f ( v ) d v = 1 \int_{0}^{N}\frac {dN}{N}=\int_{0}^{\infin}f(v)dv=1 ∫0NNdN=∫0∞f(v)dv=1
三个统计速率
最概然速率: v p = 1.41 R T M m o l v_p=1.41\sqrt{\frac{RT}{M_{mol}}} vp=1.41MmolRT
平均速率: v ˉ = 1.60 R T M m o l \bar v=1.60\sqrt{\frac{RT}{M_{mol}}} vˉ=1.60MmolRT
方均根速率: v ˉ 2 = 1.73 R T M m o l \sqrt{\bar v^2}=1.73\sqrt{\frac{RT}{M_{mol}}} vˉ2=1.73MmolRT
大小关系: v p < v ˉ < v ˉ 2 v_p<\bar v<\sqrt{\bar v^2} vp<vˉ<vˉ2
等值变化
等容过程
Q
V
=
Δ
U
=
ν
i
2
R
Δ
T
Q_V=\Delta U=\nu \frac i 2R\Delta T
QV=ΔU=ν2iRΔT
Q
V
=
ν
C
V
Δ
T
Q_V=\nu C_V\Delta T
QV=νCVΔT
C
V
=
i
2
R
C_V=\frac i 2R
CV=2iR
等压过程
Q
P
=
Δ
U
+
A
=
ν
(
i
2
+
1
)
R
Δ
T
Q_P=\Delta U+A=\nu (\frac i 2+1)R\Delta T
QP=ΔU+A=ν(2i+1)RΔT
Q
P
=
ν
C
P
Δ
T
Q_P=\nu C_P\Delta T
QP=νCPΔT
C
P
=
(
i
2
+
1
)
R
C_P= (\frac i 2+1)R
CP=(2i+1)R
等温过程
A
T
=
ν
R
T
l
n
V
2
V
1
A_T=\nu RTln\frac{V_2}{V_1}
AT=νRTlnV1V2
Q
T
=
A
T
=
ν
R
T
l
n
V
2
V
1
=
ν
R
T
l
n
P
1
P
2
Q_T=A_T=\nu RTln\frac{V_2}{V_1}=\nu RTln\frac{P_1}{P_2}
QT=AT=νRTlnV1V2=νRTlnP2P1
绝热系数
γ
=
i
+
2
i
\gamma=\frac {i+2} {i}
γ=ii+2