N皇后
问题描述
在一个
n
×
n
n\times n
n×n的棋盘上摆放
n
n
n个皇后,要求任意两个皇后不能冲突,即任意两个皇后不在同一行、同一列或者同一斜线上。
算法基本思想
将第
i
i
i个皇后摆放在第
i
i
i行,
i
i
i从1开始,每个皇后都从第1列开始尝试。尝试时判断在该列摆放皇后是否与前面的皇后有冲突,如果没有冲突,则在该列摆放皇后,并考虑摆放下一个皇后;如果有冲突,则考虑下一列。如果该行没有合适的位置,回溯到上一个皇后,考虑在原来位置的下一个位置上继续尝试摆放皇后…,直到找到所有合理摆放方案。
C++代码
#include<iostream>
#include<vector>
using namespace std;
class Solution{
public:
vector< vector<string> > result;
void backTrack(int n, int row, vector<string>& chessboard) {
if(row == n) {
result.push_back(chessboard);
return ;
}
for(int col = 0; col < n; col++) {
if(isValid(row, col, chessboard, n)) {
chessboard[row][col] = 'Q';
backTrack(n, row + 1, chessboard);
chessboard[row][col] = '.';
}
}
}
bool isValid(int row, int col, vector<string>& chessboard, int n) {
for(int i = 0; i < row; i++) {
if(chessboard[i][col] == 'Q') {
return false;
}
}
for(int i = row-1, j = col-1; i >= 0 && j>= 0; i--, j--) {
if(chessboard[i][j] == 'Q') {
return false;
}
}
for(int i = row-1, j = col+1; i >=0 && j < n; i--, j++) {
if(chessboard[i][j] == 'Q') {
return false;
}
}
return true;
}
vector< vector<string> > solveQueen(int n) {
result.clear();
vector<string> chessboard(n, string(n, '.'));
backTrack(n, 0, chessboard);
return result;
}
};
int main() {
int n;
cin >> n;
Solution solution;
solution.solveQueen(n);
for(int i = 0; i < n; i++) {
for(int j = 0; j < n; j++) {
cout << solution.result[i][j] << endl;
}
cout << endl;
}
return 0;
}