深度学习Day-02:实现CIFAR10彩色图片识别

 🍨 本文为:[🔗365天深度学习训练营]中的学习记录博客
 🍖 原作者:[K同学啊 | 接辅导、项目定制]

一、 基础配置

  • 语言环境:Python3.8
  • 编译器选择:Pycharm
  • 深度学习环境:
    • torch==1.12.1+cu113
    • torchvision==0.13.1+cu113

二、 前期准备 

1.设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

print(device)

根据个人设备情况,选择使用GPU/CPU进行训练,在Pycharm中需要添加print命令来查看是否使用了GPU 

2. 导入数据

CIFAR10为公开数据集,故:

第一步:调用dataset来下载API中的CIFAR10数据集,同时划分好训练集和测试集。

函数原型:torchvision.datasets.CIFAR10

torchvision.datasets.CIFAR10(root, train=True, transform=None, target_transform=None, download=False)

参数说明:

  • root (string) :数据地址,本项目中设置为“data”,数据将下载到当前文件的同一目录
  • train (string) :True-训练集,False-测试集
  • download (bool,optional) : 如果为True,从互联网上下载数据集,并把数据集放在root目录下。
  • transform (callable, optional ):这里的参数选择一个你想要的数据转化函数,直接完成数据转化
  • target_transform (callable,optional) :接受目标并对其进行转换的函数/转换。
train_ds = torchvision.datasets.CIFAR10('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.CIFAR10('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

运行上述代码,可得到如下结果:

Extracting data\cifar-10-python.tar.gz to data
Files already downloaded and verified

第二步:调用dataloader加载数据,并设置好用于训练的batch_size(批大小)

函数原型:torch.utils.data.DataLoader

torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device='')

参数说明:

  • dataset(string) :加载的数据集,即通过torchvision.datasets.CIFAR10载入的数据集
  • batch_size (int,optional) :每批加载的样本大小(默认值:1,这里设置为batch_size)
  • shuffle(bool,optional) : 如果为True(训练时),每个epoch重新排列数据。
  • sampler (Sampler or iterable, optional) : 定义从数据集中抽取样本的策略。 可以是任何实现了 __len__ 的 Iterable。 如果指定,则不得指定 shuffle 。
  • batch_sampler (Sampler or iterable, optional) : 类似于sampler,但一次返回一批索引。与 batch_size、shuffle、sampler 和 drop_last 互斥。
  • num_workers(int,optional) : 用于数据加载的子进程数。 0 表示数据将在主进程中加载(默认值:0)。
  • pin_memory (bool,optional) : 如果为 True,数据加载器将在返回之前将张量复制到设备/CUDA 固定内存中。 如果数据元素是自定义类型,或者collate_fn返回一个自定义类型的批次。
  • drop_last(bool,optional) : 如果数据集大小不能被批次大小整除,则设置为 True 以删除最后一个不完整的批次。 如果 False 并且数据集的大小不能被批大小整除,则最后一批将保留。 (默认值:False)
  • timeout(numeric,optional) : 设置数据读取的超时时间 , 超过这个时间还没读取到数据的话就会报错。(默认值:0)
  • worker_init_fn(callable,optional) : 如果不是 None,这将在步长之后和数据加载之前在每个工作子进程上调用,并使用工作 id([0,num_workers - 1] 中的一个 int)的顺序逐个导入。 (默认:None)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds, 
                                       batch_size=batch_size, 
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds, 
                                       batch_size=batch_size)

接着,使用next(iter())获取train_dl中一个批次的数据和标签

# 取一个批次查看数据格式
# 数据的shape为:[batch_size, channel, height, weight]
# 其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度。
imgs, labels = next(iter(train_dl))
print(imgs.shape)

并打印出imgs的大小:

torch.Size([32, 3, 32, 32])

其中,32为批大小,3为颜色通道(即RGB,对应了彩色图片),32*32为图片大小。

3. 数据可视化

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。例如一个矩阵是的shape是(5, 1),使用过这个函数后,结果为(5, )

import numpy as np

# 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = imgs.numpy().transpose((1, 2, 0))
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
plt.show()

可视化结果如下所示:

4.构建CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

 (1).nn.Conv2d为卷积层,用于提取图片的特征,传入参数为输入channel,输出channel,池化核大小

函数原型torch.nn.Conv2d()

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

关键参数说明

  • in_channels ( int ) – 输入图像中的通道数
  • out_channels ( int ) – 输出图像中的通道数(通过卷积实现)
  • kernel_size ( int or tuple ) – 卷积核的大小
  • stride ( int or tuple , optional ) -- 卷积的步幅。默认值:1
  • padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
  • dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。
  • padding_mode (字符串,可选) – 'zeros', 'reflect', 'replicate'或'circular'. 默认:'zeros'

(2).nn.MaxPool2d为池化层,进行下采样,用更高层的抽象表示图像特征,传入参数为池化核大小

函数原型torch.nn.MaxPool2d()

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明

  • kernel_size:最大的窗口大小
  • stride:窗口的步幅,默认值为kernel_size
  • padding:填充值,默认为0
  • dilation:控制窗口中元素步幅的参数

 (3).nn.ReLU为激活函数,使模型可以拟合非线性数据

 (4).nn.Linear为全连接层,可以起到特征提取器的作用,最后一层的全连接层也可以认为是输出层,传入参数为输入特征数和输出特征数

函数原型torch.nn.Linear()

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明

  • in_features:每个输入样本的大小
  • out_features:每个输出样本的大小

 (5).nn.Sequential可以按构造顺序连接网络,在初始化阶段就设定好网络结构,不需要在前向传播中重新写一遍

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3)   # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(kernel_size=2)       # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(64, 64, kernel_size=3)  # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(kernel_size=2) 
        self.conv3 = nn.Conv2d(64, 128, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool3 = nn.MaxPool2d(kernel_size=2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(512, 256)          
        self.fc2 = nn.Linear(256, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))
        x = self.pool3(F.relu(self.conv3(x)))
        
        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

加载并打印模型:

from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

手写的模型如下所示: 

=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
Model                                    --
├─Conv2d: 1-1                            1,792
├─MaxPool2d: 1-2                         --
├─Conv2d: 1-3                            36,928
├─MaxPool2d: 1-4                         --
├─Conv2d: 1-5                            73,856
├─MaxPool2d: 1-6                         --
├─Linear: 1-7                            131,328
├─Linear: 1-8                            2,570
=================================================================
Total params: 246,474
Trainable params: 246,474
Non-trainable params: 0
=================================================================

针对卷积和池化操作,网络数据shape变化过程如下:

下面的网络数据shape变化过程为:

3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512 -> 256 ->10

可以根据相应的公式计算 

为简化计算,在本项目中未使用 dilation,故将计算公式更改为:

例如,输入图片大小为32*32,卷积核大小为3,填充边距为0,步幅为1,那么新输出的长宽分别为:

\frac{32+2*0-3}{1}+1=30

三、 训练模型

1. 设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

这里的三个超参数均可根据要求进行修改,如学习率的数值,优化器的选择等 

2. 编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
  • pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中,其中 pred 是一个包含预测概率的二维数组,每行表示一个样本的预测概率分布。
  • (pred.argmax(1) == y)是一个布尔值,其中等号是否成立代表对应样本的预测是否正确(True 表示正确,False 表示错误)。
  • .type(torch.float)是将布尔数组的数据类型转换为浮点数类型,即将 True 转换为 1.0,将 False 转换为 0.0。
  • .sum()是对数组中的元素求和,计算出预测正确的样本数量。
  • .item()将求和结果转换为标量值,以便在 Python 中使用或打印。

Tips:(pred.argmax(1) == y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。

这通常用于评估分类模型的准确率或计算分类问题的正确预测数量。

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

epochs     = 10
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

在这里,format() 方法被调用来传入具体的值,并将它们格式化到模板字符串中的对应位置。例如,template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss) 将会将 epoch+1 的值格式化到第一个占位符中,epoch_train_acc*100 的值格式化到第二个占位符中,并以此类推。 

Epoch: 1, Train_acc:12.8%, Train_loss:2.282, Test_acc:19.2%,Test_loss:2.171
Epoch: 2, Train_acc:25.5%, Train_loss:2.010, Test_acc:29.2%,Test_loss:1.909
Epoch: 3, Train_acc:34.3%, Train_loss:1.799, Test_acc:33.9%,Test_loss:1.911
Epoch: 4, Train_acc:40.7%, Train_loss:1.623, Test_acc:43.4%,Test_loss:1.563
Epoch: 5, Train_acc:44.8%, Train_loss:1.515, Test_acc:46.6%,Test_loss:1.476
Epoch: 6, Train_acc:48.6%, Train_loss:1.420, Test_acc:50.8%,Test_loss:1.366
Epoch: 7, Train_acc:52.0%, Train_loss:1.337, Test_acc:53.7%,Test_loss:1.285
Epoch: 8, Train_acc:54.8%, Train_loss:1.265, Test_acc:55.5%,Test_loss:1.233
Epoch: 9, Train_acc:57.4%, Train_loss:1.201, Test_acc:58.6%,Test_loss:1.176
Epoch:10, Train_acc:59.5%, Train_loss:1.145, Test_acc:59.1%,Test_loss:1.165
Done

这里设置了epochs为10时结果训练精度为59.5%,测试精度为59.1%,可以看到,随着批次的提升,精度在不断上升,故若想提高准确率可修改前文提到的超参数和epochs。

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

可视化结果如下:

 

五、个人理解

本项目为基于CIFAR10彩色图片识别的简单CNN网络模型,根据代码编写过程与思路来看,本项目和深度学习Day-01的训练过程如出一辙。

需要注意的是:

1.本项目中,颜色通道由Day-01的灰度图(即黑白两色)变为本文中的RGB三色通道,可以看出小的epoch已经不能满足对训练精度的要求,针对以上问题做出思考,可通过提高学习率和增大epoch的方法来提高精度。其次,根据个人理解,也可以通过图像增强等方式增加输入网络的数据量来提升精度,具体操作需要等待学习了图像操作的内容后实施。

2.本项目中,需要学习的是卷积层和池化层的计算过程,虽然可以通过Debug实现每层输出形状的可视化,但是通过自己的手动推导,有助于增强对卷积神经网络的理解。

3.项目原文中,有针对dilation操作的具体操作,但是本项目中没有使用到,故本文中没有做出详细解释,具体知识在后续使用使更新。

### 回答1: 要下载CIFAR-10数据集到MATLAB中,可以按照以下步骤操作: 1. 首先,打开MATLAB,并确保已连接到互联网。 2. 在MATLAB命令窗口中输入以下命令: ```matlab websave('cifar-10-data.mat','https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz') ``` 这个命令将使用MATLAB的`websave`函数从CIFAR-10数据集的官方网站下载压缩文件,并将其保存为`cifar-10-data.mat`文件。 3. 下载完成后,解压缩刚刚下载的文件。可以使用以下命令: ```matlab untar('cifar-10-data.mat') ``` 这个命令将解压缩刚刚下载的文件。 4. 解压缩后,可以在MATLAB中使用加载函数`load`加载CIFAR-10数据集。使用以下命令: ```matlab load('cifar-10-batches-mat/data_batch_1.mat') ``` 这个命令将加载CIFAR-10数据集的第一个批次,可以根据需要加载其他批次的数据。 5. 加载后的数据将被存储在一个MATLAB结构体变量中,可以根据需要访问不同的字段来获取图像和标签数据。 以上就是在MATLAB中下载CIFAR-10数据集的步骤。下载完成后,你就可以使用这些数据来进行图像分类、目标识别等机器学习任务。 ### 回答2: 要下载CIFAR-10数据集,您可以按照以下步骤使用MATLAB进行操作。 首先,您需要访问CIFAR-10数据集的官方网站(https://www.cs.toronto.edu/~kriz/cifar.html)以获取数据集的下载链接。 接下来,在MATLAB的命令行窗口中使用"web"函数打开CIFAR-10数据集的网页。例如,输入以下命令并按Enter键: web('https://www.cs.toronto.edu/~kriz/cifar.html','-browser') 然后,您将看到网页加载在MATLAB的浏览器中。 在网页中,您可以找到"CIFAR-10 binary version (suitable for C programs)"这个选项,该选项包含了CIFAR-10数据集的下载链接。点击链接以下载数据集。 下载完成后,您可以将数据集解压缩到您选择的文件夹中。建议您将数据集保存在一个清晰和易于访问的位置。 在MATLAB中,您可以使用"load"函数加载下载的数据集文件。例如,假设您将数据集保存为"CIFAR-10"文件夹,您可以使用以下命令读取数据集: load(fullfile('CIFAR-10', 'data_batch_1.mat')) 这将加载数据集中的第一个数据批次到MATLAB的工作空间中,您可以使用MATLAB的各种功能和工具来进一步处理和分析数据。 总结起来,要在MATLAB中下载CIFAR-10数据集,请访问官方网站获取下载链接,使用MATLAB的"web"函数打开网页并下载数据集,然后使用"load"函数加载数据集文件到MATLAB。 ### 回答3: 要在MATLAB中下载CIFAR-10数据集,可以按照以下步骤进行: 1. 首先需要在MATLAB中创建一个文件夹用于保存CIFAR-10数据集。可以使用以下代码创建一个名为"CIFAR-10"的文件夹: ```matlab mkdir('CIFAR-10'); ``` 2. 使用wget命令下载CIFAR-10数据集的压缩文件。可以使用以下代码在MATLAB命令窗口中运行wget命令: ```matlab !wget https://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz ``` 下载完成后,会在当前文件夹中生成一个名为"cifar-10-matlab.tar.gz"的压缩文件。 3. 使用untar命令解压缩下载的压缩文件。可以使用以下代码在MATLAB命令窗口中运行untar命令: ```matlab untar('cifar-10-matlab.tar.gz', 'CIFAR-10'); ``` 解压缩完成后,CIFAR-10数据集的.mat文件将会存储在"CIFAR-10"文件夹中。 4. 现在可以在MATLAB中加载CIFAR-10数据集并进行数据分析、处理和训练模型等操作。可以使用以下代码加载CIFAR-10数据集: ```matlab load('CIFAR-10/cifar-10-batches-mat/data_batch_1.mat'); ``` 加载数据集后,数据集的相关变量将会在MATLAB的工作空间中生成,可以使用这些变量进行进一步的数据处理和分析。 以上是在MATLAB中下载CIFAR-10数据集的简单步骤。确保在下载和解压缩过程中的网络连接正常,并提前安装好wget和untar命令。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值