深度学习第P2周:CIFAR10彩色图片识别

>- **🍨 本文为🔗365天深度学习训练营 中的学习记录博客**
>- **🍖 原作者:K同学啊**

📌第P2周:彩色图片识别📌

  • 难度:小白入门⭐
  • 语言:Python3、Pytorch

🍺 要求:

  1. 学习如何编写一个完整的深度学习程序
  2. 手动推导卷积层与池化层的计算过程

🔔本次的重点在于学会构建CNN网络

🏡 我的环境:

  • 语言环境:Python3.11.7
  • 编译器:pyCharm 2024.1.3
  • 深度学习环境:Pytorch

一、 前期准备

1. 设置GPU

如果设备上支持GPU就使用GPU,否则使用CPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

运行结果:

因办公室环境不允许,所以一直无法安装上GPU版本,故我的依旧显示结果为:cpu

2. 导入数据

2.1下载数据

CIFAR-10数据集的内容
CIFAR10数据集共有60000个样本,每个样本都是一张32*32像素的RGB图像(彩色图像),每个RGB图像又必定分为3个通道(R通道、G通道、B通道)。这60000个样本被分成了50000个训练样本和10000个测试样本。
CIFAR10数据集是用来监督学习训练的,那么每个样本就一定都配备了一个标签值(用来区分这个样本是什么),不同类别的物体用不同的标签值,CIFAR10中有10类物体,标签值分别按照0~9来区分,他们分别是飞机( airplane )、汽车( automobile )、鸟( bird )、猫( cat )、鹿( deer )、狗( dog )、青蛙( frog )、马( horse )、船( ship )和卡车( truck )。

使用dataset下载CIFAR10数据集,并划分好训练集与测试集

#导入数据
train_ds=torchvision.datasets.CIFAR10(root='D:\THE MNIST DATABASE',train=True,
                                      transform=torchvision.transforms.ToTensor(),#将数据类型转化为Tensor
                                      download=False)
test_ds=torchvision.datasets.CIFAR10(root='D:\THE MNIST DATABASE',train=False,
                                     transform=torchvision.transforms.ToTensor(),#将数据类型转化为Tensor
                                     download=False)

因办公室网络缘故,依然无法下载,显示超时错误,故利用别人百度云盘分享的CIFAR10的压缩包cifar-10-python.tar下载下来,放置于我的固定文件夹中,运行此段代码后发现压缩包已经被解压并自动生成文件夹cifar-10-batches-py,如图所示:

文件夹打开后内容如下所示,证明我们的数据已经准备完毕:

2.2加载数据

使用dataloader加载数据,并设置好基本的batch_size

train_dl=torch.utils.data.DataLoader(train_ds,batch_size=32,shuffle=True)
test_dl=torch.utils.data.DataLoader(test_ds,batch_size=32,shuffle=True)
#取一个批次查看数据格式
#数据的shape为:[batch_size,channel,height,weight]
#其中batch_size为自己设定,channel,height和weight分别是图片的通道数,高度和宽度
imgs,labels=next(iter(train_dl))
print(imgs.shape)

运行结果:

3. 数据可视化

transpose((1, 2, 0))详解:

  • 作用是对NumPy数组进行轴变换,transpose函数的参数是一个元组,定义了新轴的顺序。原始PyTorch张量通常是以(C, H, W)的格式存储的,其中:
    • C是通道数(例如,RGB图像有3个通道)。
    • H是图像的高度。
    • W是图像的宽度。
  • transpose((1, 2, 0))将轴的顺序从(C, H, W)转换为(H, W, C),这使得数据格式更适合可视化和处理。
#数据可视化
import numpy as np
#指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20,5))
for i,imgs in enumerate(imgs[:20]):
    #维度缩减
    npimg=imgs.numpy().transpose((1,2,0))
    #将整个figure分成2行10咧,绘制第i+1个子图
    plt.subplot(2,10,i+1)
    plt.imshow(npimg,cmap=plt.cm.binary)
    plt.axis('off')
plt.show()

运行结果:

二、构建简单的CNN网络

对于一般的CNN网络来说,都是由特征提取网络和分类网络构成,其中特征提取网络用于提取图片的特征,分类网络用于将图片进行分类。

1. torch.nn.Conv2d()详解

函数原型

torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', device=None, dtype=None)

关键参数说明

  • in_channels ( int ) – 输入图像中的通道数
  • out_channels ( int ) – 卷积产生的通道数
  • kernel_size ( int or tuple ) – 卷积核的大小
  • stride ( int or tuple , optional ) -- 卷积的步幅。默认值:1
  • padding ( int , tuple或str , optional ) – 添加到输入的所有四个边的填充。默认值:0
  • dilation (int or tuple, optional) - 扩张操作:控制kernel点(卷积核点)的间距,默认值:1。
  • groups(int,可选):将输入通道分组成多个子组,每个子组使用一组卷积核来处理。默认值为 1,表示不进行分组卷积。
  • padding_mode (字符串,可选) – 'zeros', 'reflect', 'replicate'或'circular'. 默认:'zeros'

关于dilation参数图解: 

2. torch.nn.Linear()详解

函数原型

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

关键参数说明

  • in_features:每个输入样本的大小
  • out_features:每个输出样本的大小

3. torch.nn.MaxPool2d()详解

函数原型

torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)

关键参数说明

  • kernel_size:最大的窗口大小
  • stride:窗口的步幅,默认值为kernel_size
  • padding:填充值,默认为0
  • dilation:控制窗口中元素步幅的参数

4. 关于卷积层、池化层的计算:

下面的网络数据shape变化过程为:

3, 32, 32(输入数据)
-> 64, 30, 30(经过卷积层1)-> 64, 15, 15(经过池化层1)
-> 64, 13, 13(经过卷积层2)-> 64, 6, 6(经过池化层2)
-> 128, 4, 4(经过卷积层3) -> 128, 2, 2(经过池化层3)
-> 512 -> 256 -> num_classes(10)

网络结构图(可单击放大查看)

#构建CNN网络
import torch.nn.functional as F
num_classes=10  #图片的类别

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        #特征提取网络
        self.conv1=nn.Conv2d(3,64,kernel_size=3)   #第一层卷积,卷积核大小为3*3
        self.pool1=nn.MaxPool2d(kernel_size=2)   #设置池化层,池化核大小为2*2
        self.conv2=nn.Conv2d(64,64,kernel_size=3)  #第二层卷积,卷积核大小为3*3
        self.pool2=nn.MaxPool2d(kernel_size=2)   #池化层,池化核大小为2*2
        self.conv3=nn.Conv2d(64,128,kernel_size=3)  #第三层卷积,卷积核大小为3*3
        self.pool3=nn.MaxPool2d(kernel_size=2)
        #分类网络
        self.fc1=nn.Linear(512,256)   #128*2*2
        self.fc2=nn.Linear(256,num_classes)
    #向前传播
    def forward(self,x):
        x=self.pool1(F.relu(self.conv1(x)))
        x=self.pool2(F.relu(self.conv2(x)))
        x=self.pool3(F.relu(self.conv3(x)))

        x=torch.flatten(x,start_dim=1)
        x=F.relu(self.fc1(x))
        x=self.fc2(x)

        return x

加载并打印模型

from torchinfo import summary
#将模型转移到GPU中
model=Model().to(device)
summary(model)

运行结果:

三、 训练模型

1. 设置超参数

#设置超参数
loss_fn=nn.CrossEntropyLoss()   #创建损失函数
learn_rate=1e-2   #学习率
opt=torch.optim.SGD(model.parameters(),lr=learn_rate)

2. 编写训练函数

1. optimizer.zero_grad()

函数会遍历模型的所有参数,通过内置方法截断反向传播的梯度流,再将每个参数的梯度值设为0,即上一次的梯度记录被清空。

2. loss.backward()

PyTorch的反向传播(即tensor.backward())是通过autograd包来实现的,autograd包会根据tensor进行过的数学运算来自动计算其对应的梯度。

具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_grads为True,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。

更具体地说,损失函数loss是由模型的所有权重w经过一系列运算得到的,若某个w的requires_grads为True,则w的所有上层参数(后面层的权重w)的.grad_fn属性中就保存了对应的运算,然后在使用loss.backward()后,会一层层的反向传播计算每个w的梯度值,并保存到该w的.grad属性中。

如果没有进行tensor.backward()的话,梯度值将会是None,因此loss.backward()要写在optimizer.step()之前。

3. optimizer.step()

step()函数的作用是执行一次优化步骤,通过梯度下降法来更新参数的值。因为梯度下降是基于梯度的,所以在执行optimizer.step()函数前应先执行loss.backward()函数来计算梯度。

注意:optimizer只负责通过梯度下降进行优化,而不负责产生梯度,梯度是tensor.backward()方法产生的。

#训练循环
def train(dataloader,model,loss_fn,optimizer):
    size=len(dataloader.dataset)   #训练集的大小,一共60000张图片
    num_batches=len(dataloader)    #批次数目,1875(60000/32)

    train_loss,train_acc=0,0    #初始化训练损失和正确率

    for x,y in dataloader:    #获取图片及其标签
        x,y=x.to(device),y.to(device)

        #计算预测误差
        pred=model(x)    #网络输出
        loss=loss_fn(pred,y)    #计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        #反向传播
        optimizer.zero_grad()    #grad属性归零
        loss.backward()    #反向传播
        optimizer.step()    #每一步自动更新

        #记录acc与loss
        train_acc+=(pred.argmax(1)==y).type(torch.float).sum().item()
        train_loss+=loss.item()
    train_acc/=size
    train_loss/=num_batches

    return train_acc,train_loss

3. 编写测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

#编写测试函数
def test(dataloader,model,loss_fn):
    size=len(dataloader.dataset)    #测试集的大小,一共10000张图片
    num_batches=len(dataloader)     #批次数目,313(10000/32=312.5,向上取整)
    test_loss,test_acc=0,0

    #当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs,target in dataloader:
            imgs,target=imgs.to(device),target.to(device)

            #计算loss
            target_pred=model(imgs)
            loss=loss_fn(target_pred,target)

            test_loss+=loss.item()
            test_acc+=(target_pred.argmax(1)==target).type(torch.float).sum().item()

    test_acc/=size
    test_loss/=num_batches

    return test_acc,test_loss

4. 正式训练

1. model.train()

model.train()的作用是启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,需要在训练时添加model.train()model.train()是保证BN层能够用到每一批数据的均值和方差。对于Dropoutmodel.train()是随机取一部分网络连接来训练更新参数。

2. model.eval()

model.eval()的作用是不启用 Batch Normalization 和 Dropout。

如果模型中有BN层(Batch Normalization)和Dropout,在测试时添加model.eval()model.eval()是保证BN层能够用全部训练数据的均值和方差,即测试过程中要保证BN层的均值和方差不变。对于Dropoutmodel.eval()是利用到了所有网络连接,即不进行随机舍弃神经元。

训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有BN层和Dropout所带来的的性质。

#开始训练
epochs=10
train_loss=[]
train_acc=[]
test_loss=[]
test_acc=[]

for epoch in range(epochs):
    model.train()
    epoch_train_acc,epoch_train_loss=train(train_dl,model,loss_fn,opt)

    model.eval()
    epoch_test_acc,epoch_test_loss=test(test_dl,model,loss_fn)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    template=('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,epoch_test_acc*100,epoch_test_loss))
print('Done')

运行结果: 

四、 结果可视化

#结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")   #忽略警告信息
plt.rcParams['font.sans-serif']=['SimHei']   #用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False    #用来正常显示负号
plt.rcParams['figure.dpi']=100    #分辨率

epochs_range=range(epochs)

plt.figure(figsize=(12,3))
plt.subplot(1,2,1)

plt.plot(epochs_range,train_acc,label='Training Accuracy')
plt.plot(epochs_range,test_acc,label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label='Training Loss')
plt.plot(epochs_range,test_loss,label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

运行结果:

五、个人收获 

使用pytorch进行深度学习已经是第二周了,相比第一周的毫无头绪貌似已经有了些许理解。对于深度学习各种环境的安装也已经熟练起来,无论是TensorFlow、pytorch、paddle都能比较熟练的卸载和安装,但苦于网络环境问题依旧无法解决GPU版本无法安装的问题。本周由于数据集为3通道的彩色图片,自己机器在运行程序的过程中明显比上一个单通道图片数据集的例子要慢了许多。

对于程序中的各类方法和参数还是没有完全熟悉,希望今后能够逐步理解,并完全独立完成代码操作。

  • 21
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值