>- **🍨 本文为🔗365天深度学习训练营 中的学习记录博客**
>- **🍖 原作者:K同学啊**
本人往期文章可查阅: 深度学习总结
📌第P2周:彩色图片识别📌
- 难度:小白入门⭐
- 语言:Python3、Pytorch
🍺 要求:
- 学习如何编写一个完整的深度学习程序
- 手动推导卷积层与池化层的计算过程
🔔本次的重点在于学会构建CNN网络
🏡 我的环境:
- 语言环境:Python3.11.7
- 编译器:pyCharm 2024.1.3
- 深度学习环境:Pytorch
一、 前期准备
1. 设置GPU
如果设备上支持GPU就使用GPU,否则使用CPU
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision
# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
运行结果:

因办公室环境不允许,所以一直无法安装上GPU版本,故我的依旧显示结果为:cpu
2. 导入数据
2.1下载数据
CIFAR-10数据集的内容
CIFAR10数据集共有60000个样本,每个样本都是一张32*32像素的RGB图像(彩色图像),每个RGB图像又必定分为3个通道(R通道、G通道、B通道)。这60000个样本被分成了50000个训练样本和10000个测试样本。
CIFAR10数据集是用来监督学习训练的,那么每个样本就一定都配备了一个标签值(用来区分这个样本是什么),不同类别的物体用不同的标签值,CIFAR10中有10类物体,标签值分别按照0~9来区分,他们分别是飞机( airplane )、汽车( automobile )、鸟( bird )、猫( cat )、鹿( deer )、狗( dog )、青蛙( frog )、马( horse )、船( ship )和卡车( truck )。
使用dataset下载CIFAR10数据集,并划分好训练集与测试集
#导入数据
train_ds=torchvision.datasets.CIFAR10(root='D:\THE MNIST DATABASE',train=True,
transform=torchvision.transforms.ToTensor(),#将数据类型转化为Tensor
download=False)
test_ds=torchvision.datasets.CIFAR10(root='D:\THE MNIST DATABASE',train=False,
transform=torchvision.transforms.ToTensor(),#将数据类型转化为Tensor
download=False)
因办公室网络缘故,依然无法下载,显示超时错误,故利用别人百度云盘分享的CIFAR10的压缩包cifar-10-python.tar下载下来,放置于我的固定文件夹中,运行此段代码后发现压缩包已经被解压并自动生成文件夹cifar-10-batches-py,如图所示:

文件夹打开后内容如下所示,证明我们的数据已经准备完

最低0.47元/天 解锁文章
3272

被折叠的 条评论
为什么被折叠?



