一、了解树形结构
1.概念
树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成的一个具有层次关系的集合,把它叫做树是因为他看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 特点如下:
有一个特殊的结点,称为根结点,根结点没有前驱节点
除根结点外,其余结点被分为M(M>0)个互不相交的集合,其中每一个集合又是一颗与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
树是递归定义的
注意:树型结构中,子树之间不能有交集,否则就不是树形结构。
树与非树?
子树是不能相交的
除了根节点外,每个结点有且仅有一个父结点
一棵N个结点的树有N-1条边,比如如下这棵树有5个结点,4条边。
2.重要概念
以下所有概念均以上图为例
名称 | 定义 |
---|---|
结点的度 | 一个结点含有的子树的个数;D的度为3 |
树的度 | 一棵树中,所有结点度的最大值;树的度为3 |
叶子结点或终端结点 | 度为0的结点;M、J、K结点都是叶结点 |
双亲结点或父结点 | 若一个结点含有子结点,则这个结点称为其子结点的父结点;D是I的父结点 |
孩子结点或子结点 | 一个结点含有的子树的根结点称为该结点的子结点;I是D的子节点 |
根结点 | 一棵树中,没有双亲结点的结点;D |
结点的层次 | 从根开始定义起,根为第1层,根的子结点为第二层,以此类推; |
根的高度或深度 | 树中结点的最大层次;上图根的高度为3 |
3.树的表示形式
树结构相对于线性表而言比较复杂,要存储表示起来就比较麻烦了,实际中树有很多种表示方法,如:双亲表示法、孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。这里我们简单的阐述一下其中最常用的孩子兄弟表示法。
class Node5 {
int value; //树中存储的数据
Node5 firstChild; //第一个孩子引用
Node5 nextBrother; //下一个兄弟引用
}
二、二叉树(重点)
1.概念
一棵二叉树是结点的一个有限集合,该集合:
或者为空
或者是由一个根结点加上两棵别称为左子树和右子树的二叉树组成。
从上图可以看出:
1.二叉树不存在度大于2的结点
2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:任意的二叉树都是由以下几种情况复合而成的:
2.两种特殊的二叉树
1.满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树,也就是说,如果一棵二叉树的层数为K,那么每层就有2k-1 个结点,且节点总数(按照等比数列求前n项和)是2k-1,则它就是满二叉树。
2.完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树引出来的。对于深度为k的,有n个结点的二叉树,当且仅当其中每一个结点都与深度为k的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。要注意满二叉树是一种特殊的完全二叉树。
3.二叉树的性质
1.若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2i-1(i>0)个结点
非空二叉树上最多有,这里的最多可以直接看成是满二叉树
满二叉树每层节点数为2i-1个结点(前面图中解释过)
2.若规定只有根结点的二叉树的深度为1,则深度为k的二叉树的最大结点数是2k-1(k>=0)
这里的最大结点数同样可以直接看作为满二叉树
前面提到满二叉树的最大结点数为2k-1(按照等比数列求前n项和方式来求)
3.对任何一棵二叉树,如果其叶结点个数为n0,度为2的非叶结点个数为n2,则有n0=n2+1
设二叉树总的结点数为N
二叉树的结点总共就分为如下三种:度为0的结点(叶结点):n0
度为1的结点:n1
度为2的结点:n2
可列表达式①:n0+n1+n2=NN个结点有N-1条边,度为几的结点就对应有几条边,可列表达式②:n1+2*n2=N-1
将①②联立得:n0=n2+1
4.具有n个结点的完全二叉树的深度k为log(n+1)上取整
对于深度为k的满二叉树结点个数为2k-1,那么已知结点个数为n求深度k就是它的逆过程也就是log(n+1)
同时这条性质上说的是完全二叉树而非满二叉树,只需向上取整即可验证:
5.对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有结点从0开始编号,对于序号为i的结点有:
若i>0,双亲序号:(i-1)/2; i=0,i为根结点编号, 无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子
此图得以验证
4.二叉树的存储
二叉树的存储结构分为顺序存储和类似于链表的链式存储。
这里先用到类似于链表的链式存储:
//孩子表示法
class Node6 {
int val; //数据域
Node6 left; //左孩子的引用,常常代表左孩子为根的整棵左子树
Node6 right; //右孩子的引用,常常代表右孩子为根的整棵右子树
}
//孩子双亲表示法public class Node7 {
int val; //数据域
Node7 left; //左孩子的引用,常常代表左孩子为根的整棵左子树
Node7 right; //右孩子的引用,常常代表右孩子为根的整棵右子树
Node7 parent; //当前结点的根结点
}