二叉树的概念、性质及其详细解释(数据结构)


一、了解树形结构

1.概念

树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成的一个具有层次关系的集合,把它叫做树是因为他看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。 特点如下:

有一个特殊的结点,称为根结点,根结点没有前驱节点
除根结点外,其余结点被分为M(M>0)个互不相交的集合,其中每一个集合又是一颗与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继
树是递归定义的

注意:树型结构中,子树之间不能有交集,否则就不是树形结构。

树与非树?
在这里插入图片描述
子树是不能相交的
除了根节点外,每个结点有且仅有一个父结点
一棵N个结点的树有N-1条边,比如如下这棵树有5个结点,4条边。
在这里插入图片描述

2.重要概念

在这里插入图片描述
以下所有概念均以上图为例

名称定义
结点的度一个结点含有的子树的个数;D的度为3
树的度一棵树中,所有结点度的最大值;树的度为3
叶子结点或终端结点度为0的结点;M、J、K结点都是叶结点
双亲结点或父结点若一个结点含有子结点,则这个结点称为其子结点的父结点;D是I的父结点
孩子结点或子结点一个结点含有的子树的根结点称为该结点的子结点;I是D的子节点
根结点一棵树中,没有双亲结点的结点;D
结点的层次从根开始定义起,根为第1层,根的子结点为第二层,以此类推;
根的高度或深度树中结点的最大层次;上图根的高度为3

3.树的表示形式

树结构相对于线性表而言比较复杂,要存储表示起来就比较麻烦了,实际中树有很多种表示方法,如:双亲表示法、孩子表示法、孩子双亲表示法、孩子兄弟表示法等等。这里我们简单的阐述一下其中最常用的孩子兄弟表示法

class Node5 {
    int value;         //树中存储的数据
    Node5 firstChild;   //第一个孩子引用
    Node5 nextBrother;  //下一个兄弟引用
}

在这里插入图片描述

二、二叉树(重点)

1.概念

一棵二叉树是结点的一个有限集合,该集合:

或者为空
或者是由一个根结点加上两棵别称为左子树和右子树的二叉树组成。
在这里插入图片描述

从上图可以看出:
1.二叉树不存在度大于2的结点
2.二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树
注意:任意的二叉树都是由以下几种情况复合而成的:
在这里插入图片描述

2.两种特殊的二叉树

1.满二叉树: 一棵二叉树,如果每层的结点数都达到最大值,则这棵二叉树就是满二叉树,也就是说,如果一棵二叉树的层数为K,那么每层就有2k-1 个结点,且节点总数(按照等比数列求前n项和)是2k-1,则它就是满二叉树。
在这里插入图片描述
2.完全二叉树: 完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树引出来的。对于深度为k的,有n个结点的二叉树,当且仅当其中每一个结点都与深度为k的满二叉树中编号从0至n-1的结点一一对应时称之为完全二叉树。要注意满二叉树是一种特殊的完全二叉树。
在这里插入图片描述

3.二叉树的性质

1.若规定根结点的层数为1,则一棵非空二叉树的第i层上最多有2i-1(i>0)个结点

非空二叉树上最多有,这里的最多可以直接看成是满二叉树
满二叉树每层节点数为2i-1个结点(前面图中解释过)

2.若规定只有根结点的二叉树的深度为1,则深度为k的二叉树的最大结点数是2k-1(k>=0)

这里的最大结点数同样可以直接看作为满二叉树
前面提到满二叉树的最大结点数为2k-1(按照等比数列求前n项和方式来求)

3.对任何一棵二叉树,如果其叶结点个数为n0,度为2的非叶结点个数为n2,则有n0=n2+1

设二叉树总的结点数为N
二叉树的结点总共就分为如下三种:

度为0的结点(叶结点):n0
度为1的结点:n1
度为2的结点:n2
可列表达式①:n0+n1+n2=N

N个结点有N-1条边,度为几的结点就对应有几条边,可列表达式②:n1+2*n2=N-1
将①②联立得:n0=n2+1

4.具有n个结点的完全二叉树的深度k为log(n+1)上取整

对于深度为k的满二叉树结点个数为2k-1,那么已知结点个数为n求深度k就是它的逆过程也就是log(n+1)
同时这条性质上说的是完全二叉树而非满二叉树,只需向上取整即可

验证:在这里插入图片描述

5.对于具有n个结点的完全二叉树,如果按照从上至下从左至右的顺序对所有结点从0开始编号,对于序号为i的结点有
若i>0,双亲序号:(i-1)/2; i=0,i为根结点编号, 无双亲结点
若2i+1<n,左孩子序号:2i+1,否则无左孩子
若2i+2<n,右孩子序号:2i+2,否则无右孩子

此图得以验证
在这里插入图片描述

4.二叉树的存储

二叉树的存储结构分为顺序存储类似于链表的链式存储
这里先用到类似于链表的链式存储:

//孩子表示法
class Node6 {
    int val;     //数据域
    Node6 left;  //左孩子的引用,常常代表左孩子为根的整棵左子树
    Node6 right; //右孩子的引用,常常代表右孩子为根的整棵右子树
}

//孩子双亲表示法public class Node7 {
    int val;      //数据域
    Node7 left;   //左孩子的引用,常常代表左孩子为根的整棵左子树
    Node7 right;  //右孩子的引用,常常代表右孩子为根的整棵右子树
    Node7 parent; //当前结点的根结点
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

dhdhdhdhg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值