探讨一下异或(xor)为什么能还原的问题

数学表示:

        a ^ a ^ b = b;

        a ^ b ^ a = b;

        b ^ a ^ a = b;

原理:

可用穷举法证明:

     异或运算:1 ^ 1 = 0;1 ^ 0 = 1;  0 ^ 1 = 1;  0 ^ 0 = 0;

     穷举:


       



              1 ^ 1 ^ 1 = 1;

              1 ^ 1 ^ 0 = 0;

              1 ^ 0 ^ 1 = 0;

              0 ^ 1 ^ 1 = 0;

              1 ^ 0 ^ 0 = 1;

              0 ^ 1 ^ 0 = 1;

              0 ^ 0 ^ 1 = 1;

              0 ^ 0 ^ 0 = 0;

     可知任意1或0出现两次,即可抵消。

     从而推广至多个位(bit)。

     一个数异或同一个数两次,结果还是那个数。  且异或的顺序可变。

如何证明这个结论呢?

观察xor的运算, 我们可以得出一个结论, 其实xor相当于不进位的加法。

举个例子:

num1: .byte 0b0

num2: .byte 0b1

情况1

xorb 0, num1 #结果 num1 = 0b0 相当于 0 + 0 = 0

xorb 1,num1 #结果 num1 = 0b1 相当于 1 + 0 = 1

情况2

xorb 0, num2 #结果 num2 = 0b1 相当于 0 + 1 = 1

xorb 1,num2 #结果 num2 = 0b0 相当于 1 + 1 = 0b10, 进位被直接舍弃, 最后num2 = 0b0

所以上述 a xor b xor b == a, 可以先理解成 a + b + b == a 这个等式

假如 a 和 b 就是单纯的 一个bit位

那么在这两次的连加中, 不管有没有进位,最后连加的结果的最低位一定等于a (这其中b是可以 == a的)

这是二进制加法的特性,但是要注意的是连加的次数一定要是2的倍数,而且连加的被加数b一定要不变 (这其中b是可以 == a的)

有了这个特性我们回过头去看xor

上面说了xor相当于不进位的加法,所以 a+b+b 最后计算的结果所有的进位全被舍弃,自然而然保留的结果一定 == a

现在将a和b括展到多个bit位,那么原理是一样的, a xor b xor b, 还是相当于 a + b + b, xor会将每个对应的 bit位 都做 连续的加法,由于是不进位的,所以每次对应的bit位的连加是互不影响的,所以最后整个结果 所有的二进制bit位都相没有变, 所以最后的结果一定是a

xor上述这样的运算特性,可以做一些简单的加密

<think>嗯,用户问的是异或运算是什么。首先,我需要回忆一下异或运算的基本定义。异或,全称是“异或运算”,英文是Exclusive OR,通常缩写为XOR。记得在逻辑运算中,它和AND、OR、NOT这些类似,但又有自己的特点。 接下来,我应该从逻辑门的角度来解释异或运算。异或门有两个输入,当且仅当两个输入不同的时候,输出才是真,也就是1。如果两个输入相同,不管是0还是1,输出都是0。这样的话,真值表应该是什么样的呢?对的,0 XOR 0是0,0 XOR 1是1,1 XOR 0是1,1 XOR 1是0。这个真值表需要列出来,帮助用户更直观地理解。 然后,数学符号方面,异或运算有不同的表示方式。在数学或计算机科学中,常用的符号有⊕、^,或者用文字XOR来表示。比如A XOR B可以写成A ⊕ B,或者在编程中用^符号,像A ^ B。需要提到不同场景下可能使用的符号差异,避免用户混淆。 接下来,应该解释异或运算的性质。比如交换律和结合律,异或运算是否满足这些?对的,交换律成立,A ⊕ B = B ⊕ A;结合律的话,(A ⊕ B) ⊕ C = A ⊕ (B ⊕ C),这也是成立的。另外,还需要提到一些特殊的性质,比如任何数与自身异或结果为0,像A ⊕ A = 0;还有和0异或的结果是自身,A ⊕ 0 = A。这些性质在编程中常被用来做变量交换或者数据校验等。 应用方面,用户可能想知道异或运算有什么实际用途。比如在计算机中的位运算,异或可以用来交换两个变量的值而不需要临时变量,这个技巧挺有趣的。另外,在加密算法中,异或也经常被使用,因为它具有可逆性,两次异或同一个值就能恢复原数据。还有错误检测与纠正,比如奇偶校验或者RAID5中的磁盘冗余,都利用了异或的特性。 用户可能的背景可能包括编程或计算机基础,所以需要举一些例子,比如变量交换的代码片段,或者简单的加密解密过程。不过用户没有明确说明是否需要代码示例,但至少应该提到这些应用场景,让用户知道异或运算的重要性。 另外,可能需要考虑用户是否有更深层的需求,比如学习异或运算是为了理解某个算法,或者解决一个具体的问题。比如在密码学中的流密码常用异或,或者在数据结构中的某些操作。但用户的问题比较基础,所以先集中在基本定义和常见应用上。 还要注意避免使用过于专业的术语,保持解释的通俗易懂。比如用“输入不同则输出1,相同则输出0”这样的描述,比严格的逻辑表达式更直观。同时,确保数学表达式用LaTeX正确呈现,比如真值表部分可以用表格形式,但根据系统指令,行内公式需要用$...$,独立公式用$$...$$。不过在这里可能需要用文字描述,或者用简单的列举。 最后,检查是否有遗漏的重要点。比如异或运算在二进制加法中的应用,因为不带进位的加法其实就是异或操作,这在计算机的加法器设计中是一个基础概念。这可能也是用户想了解的一部分,但可能属于进阶内容,如果用户需要更深入的解释,可以后续补充。 总结一下,回答的结构应该先定义异或运算,然后真值表,符号表示,性质,应用场景。确保每个部分清晰,用例子帮助理解,并连接实际应用,让用户明白异或运算的价值和用途。</think>异或运算(Exclusive OR,简称XOR)是一种基础逻辑运算,在计算机科学、密码学等领域有广泛应用。以下从定义、规则、性质到应用逐步说明: --- ### 一、基本定义 异或运算作用于两个**二进制位**(0或1),规则为: - 当**两个输入不同**时,输出1; - 当**两个输入相同**时,输出0。 数学符号表示为: $$ A \oplus B $$ 或编程中常见的符号 `A ^ B`。 --- ### 二、真值表 | 输入A | 输入B | 输出(A ⊕ B) | |-------|-------|---------------| | 0 | 0 | 0 | | 0 | 1 | 1 | | 1 | 0 | 1 | | 1 | 1 | 0 | --- ### 三、核心性质 1. **交换律**:$A \oplus B = B \oplus A$ 2. **结合律**:$(A \oplus B) \oplus C = A \oplus (B \oplus C)$ 3. **自反性**:$A \oplus A = 0$(相同数异或结果为0) 4. **与0运算**:$A \oplus 0 = A$(任何数与0异或结果不变) 5. **可逆性**:若 $C = A \oplus B$,则 $A = C \oplus B$(加密/解密的基础) --- ### 四、典型应用场景 #### 1. 变量交换(无需临时变量) ```python a = 5 # 二进制 101 b = 3 # 二进制 011 a = a ^ b # a = 101 ^ 011 = 110 (6) b = a ^ b # b = 110 ^ 011 = 101 (5) a = a ^ b # a = 110 ^ 101 = 011 (3) ``` 通过三次异或操作,实现`a`和`b`值的交换。 #### 2. 简单加密 对数据$M$用密钥$K$异或加密,生成密文$C$: $$ C = M \oplus K $$ 解密时再次异或$K$即可还原: $$ M = C \oplus K $$ #### 3. 错误检测与纠错 - **奇偶校验**:通过异或计算二进制串的奇偶性,检测传输错误。 - **RAID 5**:磁盘阵列中使用异或生成冗余数据,实现故障恢复。 #### 4. 计算机加法器 二进制加法中,**不考虑进位**的加法本质是异或运算: $$ \text{和} = A \oplus B $$ 进位则由逻辑与运算处理。 --- ### 五、延伸理解 异或运算的底层本质是“**差异判断**”——只有当输入存在差异时才输出真值。这一特性使其在算法优化、硬件设计等领域成为关键工具。例如: - 图形学中用于快速切换显示内容(差异部分更新); - 算法题中用于找出数组中唯一出现奇数次的数字(如LeetCode 136题)。 如果需要进一步了解具体场景的实现细节,可以深入探讨
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值