软件下载网址:https://orangedatamining.com
1插件下载image analytics
特征统计:
图形分析按钮
决策树以及其作用
Tree Viewer展示出来可以分类花
逻辑回归
混淆矩阵即查看总共花朵的总数以及识别出来
用Test and Score交叉验证可以看到这个决策树,knn,svn,neural network可以看出来准确率怎么样
预测的时候是一边连接已有的模型如决策树,knn,逻辑回归中间为prediction,另一侧为未知数据三者缺一不可
以下就是决策树和knn模型所预测未知花朵的结果
图片分析:
import images为导入图片,image viewer就可以看到导入的图片
图片怎么转化为机器能够识别的图片需要有image embedding和data table
从data table中可以看到image embedding把一张图片分成2048个特征来识别一张图片
当想知道图片之间是否相似的时候就需要用到distances然后在里面选择cosine
聚类相邻的数据整合到一起
从hierarchical clustering中可以看到很多数据
要想知道是否分出相似的图片则需要有一个image viewer这样就可以看出来
当在hierarchical clustering中选择好几个东西之后就可以在image viewer中看出相似的图片即既就可以通过聚类抓出来
相似的图片通过聚类抓出来
然后想知道logic regression这个模型测试image embedding中的数据的时候经过交叉验证准确率是多少
这里就可以看到logic regression的准确率是0.88
然后给后面添加混淆矩阵的时候就可以知道总共有多少花以及判断正确的数量
以下所示就是混淆矩阵所链接的神经网络所显示的准确率
这里是交叉验证下能看到的各种数据
要是想预测未知花的种类就需要导入未知花可以用逻辑回归和神经网络来预测
结果显示预测的结果都不太好
数据整理
筛选数据:
以下实例就是筛选年龄10-100岁
如下图所示就是筛选之前与筛选之后年龄的变化
以下就是筛选登船港口C,Q,S的
以下开始就是列过滤
下面就是具体操作(左面那一侧就是不显示的)
meats就是没用的后面会变成灰色
下面把左侧放到右侧的时候就是显示哪些特征
下面就是看到灰色的就是meats中的
如果把sex放入忽略中就是之后再table中找不到改数据
下面展示的是替换数值的
以下就是显示修改数据之后的效果
下面展示随机抽样
这就是随机抽取百分之50
以下是对数据离散化