题意 :
- 给 n 和 k (<2e5),保证每个数ai < 2^k,问使得 𝑎1 & 𝑎2 & 𝑎3 & … & 𝑎𝑛≥𝑎1⊕𝑎2⊕𝑎3⊕…𝑎𝑛 的序列个数 % (1e9 + 7)。
思路 :
- ai < 2^k 即 每个数最多k位(提示从第i位来看)
- 注意此题是组合数C而不是排列A,比如001和100,本质上是挑出位置放1,看有几个位置可以放1.
- 从小样例来看,考虑第i位,且从最高位开始往后考虑
- 若n为奇数 :若要使得与的结果大于等于异或的结果,只要不是奇数个1和偶数个且不为0个的0的情况(是小于),否则都是等于(满足条件)(偶数个1和奇数个0,奇数个1和0个0,0个1和奇数个0)。单第i位来看 sum = C n 0 + C n 2 + . . . + C n n − 1 + 1 = 2 n − 1 + 1 C_{n}^{0} + C_{n}^{2} + ... + C_{n}^{n-1} + 1 = 2^{n-1} + 1 Cn0+Cn2+...+Cnn−1+1=2n−1+1,因为有k位,且由于只有小于和等于,那么小于的情况被排除了,只剩下等于,那么k位中的每一位都互不干扰,所以总的方案数就是 s u m k {sum}^{k} sumk。
- 若n为偶数 : 小于的情况 :奇数个1和奇数个0;等于的情况 :偶数个1和偶数个0,0个1和偶数个0;大于的情况 :偶数个1和0个0。那么sum = C n 0 + C n 2 + . . . + C n n = 2 n − 1 C_{n}^{0} + C_{n}^{2} + ... + C_{n}^{n} = 2^{n-1} Cn0+Cn2+...+Cnn=2n−1因此,若为大于,直接加上后面随意组合的情况,若为等于,去递归下一位。
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <vector>
#include <unordered_map>
#include <unordered_set>
#include <set>
#include <map>
#define endl '\n'
#define IOS ios::sync_with_stdio(false); cin.tie(0); cout.tie(0)
using namespace std;
const double pi = acos(-1);
typedef long long ll;
const int mod = 1e9 + 7;
ll qmi(int a, int b, int p)
{
ll res = 1 % p;
while (b)
{
if (b & 1) res = res * a % p;
a = a * (ll)a % p;
b >>= 1;
}
return res;
}
int main()
{
IOS;
int T;
cin >> T;
while (T -- )
{
int n, k;
cin >> n >> k;
if (k == 0) cout << 1 << endl;
else
{
if (n & 1) cout << qmi(qmi(2, n - 1, mod) + 1, k, mod) << endl;
else
{
ll res = 0;
for (int i = k; i > 0; i -- )
{
ll p = qmi(qmi(2, n, mod), i - 1, mod);
ll q = qmi(qmi(2, n - 1, mod) - 1 + mod, k - i, mod);
res = (res + p * q % mod) % mod;
}
res = (res + qmi(qmi(2, n - 1, mod) - 1 + mod, k, mod) % mod) % mod;
cout << res << endl;
}
}
}
return 0;
}