Let‘s Play Curling 二分,lower_bound(2020.12.南京)

该博客介绍了一个数学问题的解决方案,涉及在数轴上分配红蓝两队石头,目标是找到一个点使红队得分最大化。通过排序和二分查找策略,计算红队在每个蓝石头区间内的石头数量,从而找到最大得分。当无法获胜时,输出'Impossible'。文章展示了如何利用C++实现这一算法。
摘要由CSDN通过智能技术生成

在这里插入图片描述
在这里插入图片描述
题意 :

  • 红石头属于红队,蓝石头属于蓝队,分别给出所有红色蓝色石头在数轴上的位置,构造目标点的位置(实数),使得红队胜利且获得的分数尽可能多,红队的分数 等于 所有 比所有蓝石头离目标点近 的红石头 的数量,求 红队的最大分数或者如果无法赢就输出impossivle

思路 :

  • 确定一个c点,红队中距离c的位置比蓝队中所有石头都近的 石头的个数,就是红队的分数,发现寻找c点不好找,于是转换思路,发现两个蓝色石头之间红色石头的数量的最大值即为答案,因为在两个蓝色石头之间的红色石头一定比所有蓝色石头更近c,且蓝色石头外的红色石头不满足比所有蓝色石头更近,因此,证为最优解
  • 先将两个序列排序,然后用lower_bound或者upper_bound寻找在两个蓝色石头间红色石头的个数
  • 特别地,在第一个蓝色石头之前的和最后一个蓝色石头之后的也满足条件,因此,在最前面和最后面再增加蓝色石头
  • lower_bound复杂度 O ( l o g N ) O(logN) O(logN),返回值是下标
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <unordered_set>
#include <math.h>
using namespace std;
 
typedef long long ll;
typedef pair<int, int> PII;
 
#define endl '\n'
#define fi first
#define se second
#define push_back
#define rep(i, l, r) for (ll i = l; i <= r; i ++ )

const int N = 1e5 + 10;

int a[N], b[N];

void solve()
{
    int n, m; cin >> n >> m;
    for (int i = 1; i <= n && cin >> a[i]; i ++ );
    for (int i = 1; i <= m && cin >> b[i]; i ++ );
    
    sort(a + 1, a + n + 1);
    sort(b + 1, b + m + 1);
    
    b[0] = 0;
    b[m + 1] = 1000000001;
    
    int ans = 0;
    for (int i = 1; i <= m + 1; i ++ )
    {
        int l = b[i - 1], r = b[i];
        
        int len = lower_bound(a + 1, a + n + 1, r) - 1 - upper_bound(a + 1, a + n + 1, l) + 1;
        ans = max(ans, len);
    }
    
    if (ans == 0) cout << "Impossible" << endl;
    else cout << ans << endl;
}
 
int main()
{
    cin.tie(nullptr) -> sync_with_stdio(false);
    
    int _;
    cin >> _;
    while (_ -- )
        solve();

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值