题意 :
- 红石头属于红队,蓝石头属于蓝队,分别给出所有红色蓝色石头在数轴上的位置,构造目标点的位置(实数),使得红队胜利且获得的分数尽可能多,红队的分数 等于 所有 比所有蓝石头离目标点近 的红石头 的数量,求 红队的最大分数或者如果无法赢就输出impossivle
思路 :
- 确定一个c点,红队中距离c的位置比蓝队中所有石头都近的 石头的个数,就是红队的分数,发现寻找c点不好找,于是转换思路,发现两个蓝色石头之间红色石头的数量的最大值即为答案,因为在两个蓝色石头之间的红色石头一定比所有蓝色石头更近c,且蓝色石头外的红色石头不满足比所有蓝色石头更近,因此,证为最优解
- 先将两个序列排序,然后用lower_bound或者upper_bound寻找在两个蓝色石头间红色石头的个数
- 特别地,在第一个蓝色石头之前的和最后一个蓝色石头之后的也满足条件,因此,在最前面和最后面再增加蓝色石头
- lower_bound复杂度 O ( l o g N ) O(logN) O(logN),返回值是下标
#include <iostream>
#include <algorithm>
#include <cstring>
#include <vector>
#include <unordered_set>
#include <math.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> PII;
#define endl '\n'
#define fi first
#define se second
#define push_back
#define rep(i, l, r) for (ll i = l; i <= r; i ++ )
const int N = 1e5 + 10;
int a[N], b[N];
void solve()
{
int n, m; cin >> n >> m;
for (int i = 1; i <= n && cin >> a[i]; i ++ );
for (int i = 1; i <= m && cin >> b[i]; i ++ );
sort(a + 1, a + n + 1);
sort(b + 1, b + m + 1);
b[0] = 0;
b[m + 1] = 1000000001;
int ans = 0;
for (int i = 1; i <= m + 1; i ++ )
{
int l = b[i - 1], r = b[i];
int len = lower_bound(a + 1, a + n + 1, r) - 1 - upper_bound(a + 1, a + n + 1, l) + 1;
ans = max(ans, len);
}
if (ans == 0) cout << "Impossible" << endl;
else cout << ans << endl;
}
int main()
{
cin.tie(nullptr) -> sync_with_stdio(false);
int _;
cin >> _;
while (_ -- )
solve();
return 0;
}