F - Find 4-cycle

在这里插入图片描述

在这里插入图片描述

题意 :

  • 给一个 无向 二分图,求图中任意一个四元环

题解 :

  • 我们发现O(T^2)是可行的;四元环就是同一个集合中两个元素,当它们两个元素有两个共同的在另一个集合中的边时,这四个元素就组成了一个四元环
  • 因此,我们可以以大的集合为第一重循环,然后枚举它的所有连边的另一个点的双重循环,这样时O(T^2),初始化f数组为-1,如果第二次有公共点,就可以输出
#include <iostream>
#include <vector>
#include <cstring>
using namespace std;
const int N = 3e5 + 10, M = 3e3 + 10;

int s, t, m;
vector<int> G[N];
int f[M][M];

int main() {
    cin >> s >> t >> m;
    for (int i = 0, u, v; i < m; ++ i) {
        cin >> u >> v;
        G[u].push_back(v - s);
    }
    memset(f, -1, sizeof f);
    for (int i = 1; i <= s; ++ i) {
        for (auto &u: G[i]) {
            for (auto &v: G[i]) {
                if (u == v) continue;
                if (f[u][v] != -1) {
                    cout << i << ' ' << f[u][v] << ' ' << u + s << ' ' << v + s;
                    return 0;
                }
                f[u][v] = i;
            }
        }
    }
    cout << -1;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值