矩阵的基本运算

1 矩阵和向量

[ 1402 191 1321 821 142 1448 ] \left[\begin{matrix}1402&&191\\1321&&821\\142&&1448\end{matrix}\right] 140213211421918211448

这是一个4*2矩阵,即4行2列

A = [ 1402 191 1321 821 142 1448 ] A=\left[\begin{matrix}1402&&191\\1321&&821\\142&&1448\end{matrix}\right] A=140213211421918211448 A i j A_{ij} Aij是指第i行第j列的元素.

向量是一种n*1的矩阵 y = [ 460 232 315 178 ] y=\left[\begin{matrix}460\\232\\315\\178\end{matrix}\right] y=460232315178为四维列向量。

2加法和标量乘法

矩阵的加法:行列数相等的可以相加。

[ 1 0 2 5 3 1 ] \left[\begin{matrix}1&&0\\2&&5\\3&&1\end{matrix}\right] 123051+ [ 4 0.5 2 5 0 1 ] \left[\begin{matrix}4&&0.5\\2&&5\\0&&1\end{matrix}\right] 4200.551= [ 5 0.5 4 10 3 2 ] \left[\begin{matrix}5&&0.5\\4&&10\\3&&2\end{matrix}\right] 5430.5102

矩阵乘法:

3* [ 1 0 2 5 3 1 ] \left[\begin{matrix}1&&0\\2&&5\\3&&1\end{matrix}\right] 123051= [ 3 0 6 15 9 3 ] \left[\begin{matrix}3&&0\\6&&15\\9&&3\end{matrix}\right] 3690153= [ 1 0 2 5 3 1 ] \left[\begin{matrix}1&&0\\2&&5\\3&&1\end{matrix}\right] 123051*3

3矩阵向量的乘法

矩阵和向量相乘: m ∗ n m*n mn的矩阵乘以 n ∗ 1 n*1 n1的向量,得到的是 m ∗ 1 m*1 m1的向量

[ 1 3 4 0 2 1 ] \left[\begin{matrix}1&&3\\4&&0\\2&&1\end{matrix}\right] 142301* [ 1 5 ] \left[\begin{matrix}1\\5\end{matrix}\right] [15]= [ 16 24 7 ] \left[\begin{matrix}16\\24\\7\end{matrix}\right] 16247
对于一元线性回归可用矩阵表示为:
在这里插入图片描述

4矩阵乘法

m ∗ n m*n mn矩阵乘以 n ∗ o n*o no矩阵变成 m ∗ o m*o mo矩阵

方法:在这里插入图片描述
矩阵乘法的性质:不具有交换律,但具有结合律。
对于多个竞争函数时:在这里插入图片描述

5单位矩阵

如同实数中的1; A ∗ I = I ∗ A = A A*I=I*A=A AI=IA=A,对角线上的元素均为1,其他位置都为零。

6 逆、转置

矩阵的逆:矩阵A是一个 m ∗ n m*n mn矩阵(方阵),如果有逆矩阵,则: A ∗ A − 1 = A − 1 ∗ A = I A*A^{-1}=A^{-1}*A=I AA1=A1A=I.
矩阵的转置:设𝐴为𝑚 × 𝑛阶矩阵(即𝑚行𝑛列),第𝑖行𝑗列的元素是𝑎(𝑖,𝑗),即:𝐴 = 𝑎(𝑖,𝑗)定义𝐴的转置为这样一个𝑛 × 𝑚阶矩阵𝐵,满足𝐵 = 𝑎(𝑗, 𝑖),即 𝑏(𝑖,𝑗) = 𝑎(𝑗, 𝑖)𝐵的第𝑖行 第𝑗列元素是𝐴的第𝑗行第𝑖列元素,记 A T = B A^T=B AT=B
转置的性质:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值