1 矩阵和向量
[ 1402 191 1321 821 142 1448 ] \left[\begin{matrix}1402&&191\\1321&&821\\142&&1448\end{matrix}\right] ⎣⎡140213211421918211448⎦⎤
这是一个4*2矩阵,即4行2列
A = [ 1402 191 1321 821 142 1448 ] A=\left[\begin{matrix}1402&&191\\1321&&821\\142&&1448\end{matrix}\right] A=⎣⎡140213211421918211448⎦⎤ A i j A_{ij} Aij是指第i行第j列的元素.
向量是一种n*1的矩阵 y = [ 460 232 315 178 ] y=\left[\begin{matrix}460\\232\\315\\178\end{matrix}\right] y=⎣⎢⎢⎡460232315178⎦⎥⎥⎤为四维列向量。
2加法和标量乘法
矩阵的加法:行列数相等的可以相加。
[ 1 0 2 5 3 1 ] \left[\begin{matrix}1&&0\\2&&5\\3&&1\end{matrix}\right] ⎣⎡123051⎦⎤+ [ 4 0.5 2 5 0 1 ] \left[\begin{matrix}4&&0.5\\2&&5\\0&&1\end{matrix}\right] ⎣⎡4200.551⎦⎤= [ 5 0.5 4 10 3 2 ] \left[\begin{matrix}5&&0.5\\4&&10\\3&&2\end{matrix}\right] ⎣⎡5430.5102⎦⎤
矩阵乘法:
3* [ 1 0 2 5 3 1 ] \left[\begin{matrix}1&&0\\2&&5\\3&&1\end{matrix}\right] ⎣⎡123051⎦⎤= [ 3 0 6 15 9 3 ] \left[\begin{matrix}3&&0\\6&&15\\9&&3\end{matrix}\right] ⎣⎡3690153⎦⎤= [ 1 0 2 5 3 1 ] \left[\begin{matrix}1&&0\\2&&5\\3&&1\end{matrix}\right] ⎣⎡123051⎦⎤*3
3矩阵向量的乘法
矩阵和向量相乘: m ∗ n m*n m∗n的矩阵乘以 n ∗ 1 n*1 n∗1的向量,得到的是 m ∗ 1 m*1 m∗1的向量
[
1
3
4
0
2
1
]
\left[\begin{matrix}1&&3\\4&&0\\2&&1\end{matrix}\right]
⎣⎡142301⎦⎤*
[
1
5
]
\left[\begin{matrix}1\\5\end{matrix}\right]
[15]=
[
16
24
7
]
\left[\begin{matrix}16\\24\\7\end{matrix}\right]
⎣⎡16247⎦⎤
对于一元线性回归可用矩阵表示为:
4矩阵乘法
m ∗ n m*n m∗n矩阵乘以 n ∗ o n*o n∗o矩阵变成 m ∗ o m*o m∗o矩阵
方法:
矩阵乘法的性质:不具有交换律,但具有结合律。
对于多个竞争函数时:
5单位矩阵
如同实数中的1; A ∗ I = I ∗ A = A A*I=I*A=A A∗I=I∗A=A,对角线上的元素均为1,其他位置都为零。
6 逆、转置
矩阵的逆:矩阵A是一个
m
∗
n
m*n
m∗n矩阵(方阵),如果有逆矩阵,则:
A
∗
A
−
1
=
A
−
1
∗
A
=
I
A*A^{-1}=A^{-1}*A=I
A∗A−1=A−1∗A=I.
矩阵的转置:设𝐴为𝑚 × 𝑛阶矩阵(即𝑚行𝑛列),第𝑖行𝑗列的元素是𝑎(𝑖,𝑗),即:𝐴 = 𝑎(𝑖,𝑗)定义𝐴的转置为这样一个𝑛 × 𝑚阶矩阵𝐵,满足𝐵 = 𝑎(𝑗, 𝑖),即 𝑏(𝑖,𝑗) = 𝑎(𝑗, 𝑖)𝐵的第𝑖行 第𝑗列元素是𝐴的第𝑗行第𝑖列元素,记
A
T
=
B
A^T=B
AT=B
转置的性质: