【计算机视觉】批量图片灰度处理方法

该文章介绍了如何利用Python中的PIL库对图片进行批量灰度处理。通过遍历指定目录下的所有.jpg和.png文件,打开图片,然后使用convert(L)方法将其转换为灰度图像,最后保存处理后的图片到同一目录,文件名前加gray_作为标识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要

对图片进行批量灰度处理,可以使用 Python 中的 PIL 库来实现。PIL 库是 Python Imaging Library 的缩写,它提供了图像处理的基本功能,包括图像的读取、写入、格式转换、缩放、裁剪和色彩转换等。

实现方法

from PIL import Image
import os

# 定义图片目录
img_dir = 'path/to/image/dir'

# 遍历目录下的所有文件
for filename in os.listdir(img_dir):
    # 判断是否是图片文件
    if filename.endswith('.jpg') or filename.endswith('.png'):
        # 打开图片
        img_path = os.path.join(img_dir, filename)
        with Image.open(img_path) as img:
            # 转换为灰度图像
            # s转换为三通道灰度图 img.convert('RGB').convert('L') 
            gray_img = img.convert('L')
            # 保存灰度图像
            gray_img_path = os.path.join(img_dir, 'gray_' + filename)
            gray_img.save(gray_img_path)

以上代码使用 PIL 库中的 Image.open 方法打开指定目录下所有的图片文件,然后使用 convert 方法将图片转换为灰度图像,最后使用 save 方法将灰度图像保存到和原始图片相同的目录下,文件名加上前缀 “gray_”。需要注意的是,这里将图片转换为灰度图时使用的是 convert('L') 方法,表示将图像转为单通道的灰度图像。如果想将图像转换为三通道的灰度图像,可以使用 convert('RGB').convert('L') 方法

自己训练目标检测模型时需要进行批量图片处理,亲测有效!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值