扩展欧几里得求逆元

引入

逆元定义

a a a n n n互素,
a ∗ x ≡ 1 ( m o d n ) a*x \equiv 1 \pmod{n} ax1(modn)
上面这个式子中的 x x x就被称为 a a a关于 n n n的逆元。

贝祖等式

a , b a,b a,b是任意两个正整数,则存在整数 x , y x,y x,y使得
a ∗ x + b ∗ y = ( a , b ) a*x+b*y=(a,b) ax+by=(a,b)
其中, ( a , b ) (a,b) (a,b)表示 a a a b b b的最大公因数。

求逆元

手工求逆元的方法不多赘述,就是辗转相除法一直除下去,然后再回代回去。

下面重点解释代码中递归返回时的那两行赋值语句:
我们知道,在相邻两次递归中,除数和余数作为新的 a a a b b b递归下去。递归后的等式即为
b ∗ x 1 + ( a % b ) ∗ y 1 = g c d b*x1+(a\%b)*y1=gcd bx1+(a%b)y1=gcd
这很好理解,但是递归返回的时候怎么办呢?
我们知道: a % b = a − ( a / b ) ∗ b a\%b=a-(a/b)*b a%b=a(a/b)b,这里的除法是c++中的除法,只保留整数部分。代入上面那个式子就能得到

b ∗ x 1 + ( a − ( a / b ) ∗ b ) ∗ y 1 b*x1+(a-(a/b)*b)*y1 bx1+(a(a/b)b)y1
= b ∗ x 1 + a ∗ y 1 − ( a / b ) ∗ b ∗ y 1 =b*x1+a*y1-(a/b)*b*y1 =bx1+ay1(a/b)by1
= a ∗ y 1 + b ∗ ( x 1 − a / b ∗ y 1 ) = g c d =a*y1+b*(x1-a/b*y1)=gcd =ay1+b(x1a/by1)=gcd

然后通过待定系数法就能得到 x = y 1 , y = x 1 − a / b ∗ y 1 x=y1,y=x1-a/b*y1 x=y1,y=x1a/by1

代码实现如下:

#include <iostream>

using namespace std;

typedef long long ll;

ll ExGcd(ll a, ll b, ll &x, ll &y) // a*x+b*y=gcd(a,b)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    ll x1, y1;
    ll gcd = ExGcd(b, a % b, x1, y1);
    x = y1;
    y = x1 - a / b * y1; // x和y的计算可以通过前后两次的递归构造等式,然后利用待定系数法用x1,y1,a,b表示出x和y
    return gcd;
}

ll invert(ll a, ll b) // 求a在b下的逆元x,不存在则返回-1
{
    ll x, y;
    ll gcd = ExGcd(a, b, x, y);
    return gcd == 1 ? (x + b) % b : -1; // 这里加b的原因是x可能求出来是负的,加上模数再取模可以保证是正的
}

int main()
{
    ll a, b;
    cin >> a >> b;
    if (invert(a, b) != -1)
        cout << a << "在" << b << "下的逆元是:" << invert(a, b) << endl;
    else
        cout << "逆元不存在" << endl;
    return 0;
}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

h0l10w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值