扩展欧几里得(逆元)


/*
    "数学的恐怖qwq"
    想了半天终于明白了, 这里尽量通俗的写出来
    扩展欧几里得算法有很多版本
    这里写两个, 选择喜欢的使用
    (注意本证明极其复杂, 请直接背模版和感性理解)
    
    扩欧可以解决两项未知解, 具体原理来自裴蜀定理
    裴蜀定理:设 a,b 是不全为零的整数, 则存在整数 x,y, 使得 ax+by=gcd(a,b).
    而扩欧就可以在求出gcd的过程中把其中的x和y求出来(一种方案)
    就可以得到式子ax + by = gcd(a, b);中所有的数值
    因为知道了gcd(a, b)就可以通过这样求出每个二元一次方程组的一个解
    例如已知a, b, c, 求满足ax + by = c中想x, y的一个解
    通过扩欧可以求出a*x1 + b*y1 = gcd(a, b);
    这个式子左右两边都乘上c / gcd(a, b);
    就可以得到a*x2 + b*y2 = c; 这时候x2和y2我们知道, 而这就是ax + by = c的一个解
    通过这个还可以求逆元
    
    而具体实现
    普通欧几里得如下
    int gcd(int a, int b)
    {
        return b ? gcd(b, a % b) : a;
    }
    
    或者应该这样
    int gcd(int a, int b)
    {
        if (b == 0)
        {
            return a;
        }
        int d = gcd(b, a % b);
        return d;
    }
    
    我们可以多带两个值x, y, 因为递归下一层内的数组没法直接传上来, 这里就通过引用的方式, 
    取址传上来, 不是取值
    就变成
    int ecgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            return a;
        }
        int d = ecgcd(b, a % b, ?, ?); // 这两个问号下面会补上
        return d;
    }
    那俩问号暂且不管
    
    那么问题来了, 怎么求x, y, 
    首先你要知道, 只有一个等式是无法求出二元一次方程的唯一解的
    所以我们的解有无穷个, 而对于最后终止的那里, 也就是b == 0的情况(gcd(a, b), 注意对应)
    ax + by = d, 因为b == 0, 所以a = d(最后这里的a是d是最大公约数)
    所以x = 1, 这样就确定了x, 但是y是可以变化的, 这也是为什么有无数解的原因
    因此这里的y可以随便去一个, 通常选y = 0(为什么下面会说),
    
    // 请把所有的x和y看成未知数, 不要想位置关系, 这里只是为了方便
    
    那么终止的x, y选完了, 接着就是看看怎么把x和y带回去
    原式子是ax + by = d; (1)
    它的递归下一层就是b*y1 + a%b * x1 == d (2)
    a % b == a - a/b * b (3)
    由(1)(3)可得 (a%b + a/b * b)*x + by = d (4)
    化简得 a%b * x + b(y + a/b * x) = d (5)
    通过(2)和(5) 可以发现, x1 = x, y1 = y + a/b * b (6)
    y = y1 - a/b * x, x = x1; (7)
    
    而x1和y1就是我想通过x和y传回来的值, 这时候看看上面两个问号, 就有两种填法
    ecgcd(b, a % b, x, y) 和 ecgcd(b, a % b, y, x)
    
    如果是ecgcd(b, a % b, x, y)
    那么本次递归ax + by = d, 下次b * x2 + a%b * y2 = d; 注意这里和(2)不一样
    传回来的x = x2 = y1, y = y2 = x1; 注意这里x和y数值上是下一层递归里面传上来的
    根据 y = y1 - a/b * x, x = x1; (7) 可得
    本次递归里的y = 下个递归里的x2 - 本次的a/b * 本次的x, 本次的x = 下次的y2
    而在实现上就是int t = y; y = x - a / b * t; x = t;
    这里有点难懂, 要注意x和y数值上是下一层递归里面传上来的, 用的还是本次递归的x, y
    作为容器, 我们要利用x, y, 更改他们自己
    
    具体代码就是
    int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1;
            y = 0;
            return a;
        }
        int d = exgcd(b, a % b, x, y);
        int t = y;
        y = x - a / b * t;
        x = t;
        return d;
    }
    
    如果是如果是ecgcd(b, a % b, y, x)
    那么本次递归ax + by = d, 下次b * y3 + a%b * x3 = d; // 这里的x3 y3都是未知数, 没什么具体含义, 所有的关系就是下面的那一句话
    传回来的y = y3 = y1, x = x3 = x1;
    根据 y = y1 - a/b * x, x = x1; (7) 可得
    本次的y = 下次的y3 - 本次的a/b * 本次的x, 本次的x = 下次的x3
    实现就是 y = y - a / b * x, x = x ==> y -= a / b * x; 
    唉?这时候我们传上来的x恰好等于这次的x, x就不用动了
    y的话就相当于自减, 非常巧妙
    
    实现
    int exgcd(int a, int b, int &x, int &y)
    {
        if (b == 0)
        {
            x = 1;
            y = 0;
            return a;
        }
        int d = exgcd(b, a % b, y, x);
        y -= a / b * x;
        return d;
    }
    
    到这里就解释的差不多了, 注意=的关系, 

    b == 0时最好y = 0, 因为我们会把y传回去, 他会经历一系列变化
    取0的话可以防止出现int爆炸的情况, 不然你可以试试这题y = 100
    至此此题结束
    
*/
#include <iostream>
#include <algorithm>
#include <cstring>

using namespace std;

int n, m;

// int exgcd(int a, int b, int &x, int &y)
// {
//     if (b == 0)
//     {
//         x = 1;
//         y = 0;
//         return a;
//     }
//     int d = exgcd(b, a % b, x, y);
//     int t = y;
//     y = x - a / b * t;
//     x = t;
//     return d;
// }

int exgcd(int a, int b, int &x, int &y)
{
    if (b == 0)
    {
        x = 1;
        y = 0;
        return a;
    }
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x;
    return d;
}

int main()
{
    int T;
    cin >> T;
    while (T -- )
    {
        int x, y;
        scanf("%d%d", &n, &m);
        exgcd(n, m, x, y);
        printf("%d %d\n", x, y);
    }
    
    return 0;
}
求逆元

什么是逆元, 逆元就是形如 a * x ≡ 1 (mod p) 其中x就叫做a对于p的一个逆元
相对的a就是x关于p的一个逆元

知道了定义 a * x ≡ 1 (mod p) 这个式子我们可以把他展开
变成a * x + p * y = 1 (y是任意整数)
这个式子形如 ax + by = d
所以这个式子可以用exgcd进行求解
也就是求出里面的x

求逆元还有一种方法, 也是一种特殊的情况, 当且仅当p为质数且(a, p) = 1
这时候它满足费马小定理 :如果p是一个质数,而整数a不是p的倍数,
也就是当且仅当p为质数且(a, p) = 1, 则有a ^ (p - 1) ≡ 1 (mod p)
这时候x也就是a的逆元就是a ^ (p - 2) ,
而这个东西可以通过快速幂求解
这就是逆元的特殊求法

欧拉定理 & 费马小定理 - OI Wiki (oi-wiki.org)

exgcd通解
欧几里得算法

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
欧几里得算法是一个用于计算两个整数的最大公约数的算法扩展欧几里得算法可以在得最大公约数的同时计算出满足贝祖等式 ax + by = gcd(a,b) 的整数解 x 和 y,其中 a 和 b 是输入的整数。 扩展欧几里得算法可用于解模反元素(逆元),其中逆元是指某个整数关于模数的乘法逆元素。 下面是我用C语言实现扩展欧几里得算法逆元的示例代码: ``` #include <stdio.h> int extended_gcd(int a, int b, int *x, int *y) { if (b == 0) { *x = 1; *y = 0; return a; } int x1, y1; int gcd = extended_gcd(b, a % b, &x1, &y1); *x = y1; *y = x1 - a / b * y1; return gcd; } int mod_inverse(int a, int m) { int x, y; int gcd = extended_gcd(a, m, &x, &y); if (gcd != 1) { printf("逆元不存在\n"); return -1; // 逆元不存在 } int inverse = (x % m + m) % m; return inverse; } int main() { int a, m; printf("请输入要逆元的整数a和模数m:"); scanf("%d %d", &a, &m); int inverse = mod_inverse(a, m); if (inverse != -1) { printf("%d关于模数%d的逆元是:%d\n", a, m, inverse); } return 0; } ``` 这是一个简单的扩展欧几里得算法逆元的实现,首先通过`extended_gcd`函数出`a`和`m`的最大公约数,并计算满足贝祖等式的整数解`x`和`y`。如果最大公约数不为1,则逆元不存在。若最大公约数为1,则通过模的方式计算`x`关于模数`m`的逆元。代码中的`mod_inverse`函数用于调用`extended_gcd`函数,并处理逆元不存在的情况。最后,通过用户输入需要逆元的整数`a`和模数`m`,并输出结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值