流体力学复习

流体力学

NJU AS 2021


感谢流体力学第一人,大气动力学教授、博士生导师吴思敏的指导

Chapter 1

1.流体的性质

易流动性 流体静止时,只有法向应力而没有切向应力

黏性: 流体层之间存在相对运动或切形变时,流体会反抗这种相对运动或切形变
理想流体不计粘性,没有抗切形变性

压缩性 不可压流体散度为0

考点一:黏性与温度的关系
随着温度升高,气体黏性增强 (热运动加剧)
液体黏性减小 (体积增大引起分子力的削弱)

考点二:理解黏性
宏观上是力
微观上是分子运动对动量传输的宏观平均

考点三:力与运动状态
(1)黏性流体在静止时无切应力(受到一点扰动就不再静止)
任何流体在静止时都无切应力作用
(2)理想流体在运动时的切应力为0
(3)流体静止时都无切应力作用,此时无法判断流体是否具有黏性

解题方法:流体很“胆小”,一受到惊吓(扰动)就乱窜(不再静止)


2.流体的连续介质假说

考点一:没有空隙
把离散分子构成的实际流体,看作是由无数流体质点没有空隙连续分布而构成的

考点二:适用范围 50km
稀薄气体运动或者空气动力学中的激波区就无法取定合适的既大又小的流点
50km左右的高空大气,仍然可以作为连续介质
在更高的地方,大气就不能看作连续介质,而是非连续的稀薄气体


3.流体加速度

d V → d t = ∂ V → ∂ t + ( V → ⋅ ∇ ) V → {{d\overrightarrow V } \over {dt}} = {{\partial \overrightarrow V } \over {\partial t}} + (\overrightarrow V \cdot \nabla )\overrightarrow V dtdV =tV +(V )V
( V → ⋅ ∇ ) V → = V → ⋅ ∇ V → (\overrightarrow V \cdot \nabla )\overrightarrow V = \overrightarrow V \cdot \nabla \overrightarrow V (V )V =V V
拉格朗日加速度与欧拉加速度之差为平流加速度

考点:局地变化
∂ [    ] ∂ t = − ( V → ⋅ ∇ ) [   ] + d [    ] d t {\partial [ \;] \over {\partial t}} = - (\overrightarrow V \cdot \nabla )[\,] + {d[\;] \over {dt}} t[]=(V )[]+dtd[]
局地变化由两部分变化组成,即流点到达该点带来的物理量值引起的的平流变化,和流点带着他处物理量在移动过程中的个别变化


定场流场——流场不随时间变化,局地变化为0
∂ V → ∂ t = 0 {{\partial \overrightarrow V } \over {\partial t}} = 0 tV =0


4.迹线与流线

流线:切线方向为速度方向
d x u ( x , y , z , t ) = d y v ( x , y , z , t ) = d z w ( x , y , z , t ) {{dx} \over {u(x,y,z,t)}} = {{dy} \over {v(x,y,z,t)}} = {{dz} \over {w(x,y,z,t)}} u(x,y,z,t)dx=v(x,y,z,t)dy=w(x,y,z,t)dz
迹线:即流点运动的轨迹
d x = u    d t , d y = v    d t , d z = w    d t dx = u\;dt,\quad dy = v\;dt,dz = w\;dt dx=udt,dy=vdt,dz=wdt


5.涡度 散度 形变率

涡度:单位面积速度环流的极限值

考点一:Z方向涡度计算
ω k = ∂ v ∂ x − ∂ u ∂ y {\omega _k} = {{\partial v} \over {\partial x}} - {{\partial u} \over {\partial y}} ωk=xvyu
这个公式最常考察

考点二:散度计算
D = ∂ u ∂ x + ∂ v ∂ y D = {{\partial u} \over {\partial x}} + {{\partial v} \over {\partial y}} D=xu+yv

考点三:形变率计算
e x y = 1 2 ( ∂ v ∂ x + ∂ u ∂ y ) \mathop e\nolimits_{xy} = {1 \over 2}({{\partial v} \over {\partial x}} + {{\partial u} \over {\partial y}}) exy=21(xv+yu)


6.速度势函数和流函数

考点一:存在条件

势函数存在条件:无旋流动
流函数存在条件:2维无辐散流动

考点二:何为拉普拉斯流
同时满足无旋和无辐散的条件
∇ × V → = 0 \nabla \times \overrightarrow V = 0 ×V =0

∇ ⋅ V → = 0 \nabla \cdot \overrightarrow V = 0 V =0
在拉普拉斯流中内含了纯平移流



Chapter 2

1.连续方程

1.1拉格朗日观点
d ρ d t + ρ ∇ ⋅ V → = 0 {{d\rho } \over {dt}} + \rho \nabla \cdot \overrightarrow V = 0 dtdρ+ρV =0
利用势函数
d ρ d t = − ρ ∇ ⋅ V → = ρ ∇ 2 φ {{d\rho } \over {dt}} = - \rho \nabla \cdot \overrightarrow V = \rho {\nabla ^2}\varphi dtdρ=ρV =ρ2φ
1.2欧拉观点
∂ ρ ∂ t + ∇ ⋅ ( ρ V → ) = 0 {{\partial \rho } \over {\partial t}} + \nabla \cdot (\rho \overrightarrow V ) = 0 tρ+(ρV )=0

1.3考点:对于不可压缩的流体
∇ ⋅ V → = 0 → d ρ d t = 0 ⇔ ρ = c o n s t \nabla \cdot \overrightarrow V = 0 \to {{d\rho } \over {dt}} = 0 \Leftrightarrow \rho = const V =0dtdρ=0ρ=const

由上式,我们可得出结论:不可压缩(无辐散)流体在运动中密度不变

However

不可压流体的密度分布不一定均匀,而且也未必定常

不可压缩流体与均匀不可压缩流体,是2个不同的概念

1.4在管道问题中
两端单位时间的流量相等 v σ = c o n s t v\sigma = const vσ=const

1.5分类
(1)均匀不可压
d ρ d t = 0 ∧ ∇ ρ = 0 {{d\rho } \over {dt}} = 0 \wedge \nabla \rho = 0 dtdρ=0ρ=0
∇ ρ 决 定 了 密 度 的 空 间 分 布 是 否 均 匀 , d ρ d t 决 定 流 体 是 否 可 压 ∇ρ决定了密度的空间分布是否均匀,{{d\rho } \over {dt}} 决定流体是否可压 ρdtdρ

p.s.均匀不可压又称作定常不可压,可由下式推出
d ρ d t = ∂ ρ ∂ t + V → ⋅ ∇ ρ {{d\rho } \over {dt}} = {{\partial \rho } \over {\partial t}} + \overrightarrow V \cdot \nabla \rho dtdρ=tρ+V ρ
若三者中的两者为0,则另外一个也为0


2.作用于流体的力

重点理解质量力表面力的区别

质量力:场力
表面力:流体层之间或接触面上的相互作用

2.1应力矢

矢量F 质量力的分布密度,是空间点和时间的函数,构成了一个矢量场

矢量p 流体的应力矢(压强),是空间点和时间的函数,而且在空间每一点还随着受力面元的取向不同而变化

pij:第一个下标表示面元的法向,第二个下标表示应力的投影方向


3.应力张量

应力张量一般会直接给出,我们需要确定法向量,并利用如下公式计算应力矢
( p n x    p n y    p n z ) = ( n x    n y    n z ) [ p x x p x y p x z p y x p y y p y z p z x p z y p z z ] \left( {{p_{nx}}\;{p_{ny}}\;{p_{nz}}} \right)=\left( {{n_x}\;{n_y}\;{n_z}} \right)\begin{bmatrix} {{p_{xx}}} & {{p_{xy}}} & {{p_{xz}}} \cr {{p_{yx}}} & {{p_{yy}}} & {{p_{yz}}} \cr {{p_{zx}}} & {{p_{zy}}} & {{p_{zz}}} \cr \end{bmatrix} (pnxpnypnz)=(nxnynz)pxxpyxpzxpxypyypzypxzpyzpzz

要点:
1.正确写出单位向量(保证模为1)
2.套用公式
3.如果题目求法应力pnn,需要再点乘单位向量,这样我们会得到一个数,而不是三元向量

p n n = ( n x    n y    n z ) ⋅ ( p n x    p n y    p n z ) {p_{nn}} = \left( {{n_x}\;{n_y}\;{n_z}} \right) \cdot \left( {{p_{nx}}\;{p_{ny}}\;{p_{nz}}} \right) pnn=(nxnynz)(pnxpnypnz)
= ( n x    n y    n z ) ( n x    n y    n z ) [ p x x p x y p x z p y x p y y p y z p z x p z y p z z ] = \left( {{n_x}\;{n_y}\;{n_z}} \right)\left( {{n_x}\;{n_y}\;{n_z}} \right) \begin{bmatrix} {{p_{xx}}} & {{p_{xy}}} & {{p_{xz}}} \cr {{p_{yx}}} & {{p_{yy}}} & {{p_{yz}}} \cr {{p_{zx}}} & {{p_{zy}}} & {{p_{zz}}} \cr \end{bmatrix} =(nxnynz)(nxnynz)pxxpyxpzxpxypyypzypxzpyzpzz


4.广义牛顿黏性假设

P = 2 μ A − ( p + 2 3 μ d i v V → ) I P= 2\mu A - (p + {2 \over 3}\mu div\overrightarrow V )I P=2μA(p+32μdivV )I
− p = p x x + p y y + p z z 3 - p = {{\mathop p\nolimits_{xx} + \mathop p\nolimits_{yy} + \mathop p\nolimits_{zz} } \over 3} p=3pxx+pyy+pzz
区分P与p

P是应力张量,p是矩阵迹的-1/3


5.运动方程

N-S Equation
d V → d t = F → − 1 ρ ∇ p + 1 3 μ ρ g r a d   d i v V → + μ ρ ∇ 2 V → {{d\overrightarrow V } \over {dt}} = \overrightarrow F - {1 \over \rho }\nabla p + {1 \over 3}{\mu \over \rho }grad\ div\overrightarrow V + {\mu \over \rho }\mathop \nabla \nolimits^2 \overrightarrow V dtdV =F ρ1p+31ρμgrad divV +ρμ2V
μ ρ ∇ 2 V → 表 示 周 围 流 体 对 单 位 质 量 流 点 的 黏 性 应 力 的 合 力 矢 {\mu \over \rho }\mathop \nabla \nolimits^2 \overrightarrow V 表示周围流体对单位质量流点的黏性应力的合力矢 ρμ2V
黏性力,取决于流体黏性和流速的分布

周围流体比考虑的流点运动得快,则该流点受到的黏性力便是曳力,反之就是阻力





Euler Equation 不考虑流体的黏性
d V → d t = F → − 1 ρ ∇ p {{d\overrightarrow V } \over {dt}} = \overrightarrow F - {1 \over \rho }\nabla p dtdV =F ρ1p


6.能量方程

d d t ( c v T + V 2 2 ) = F → ⋅ V → + 1 ρ d i v ( P ⋅ V → ) + d q d t {d \over {dt}}({c_v}T + {{{V^2}} \over 2}) = \overrightarrow F \cdot \overrightarrow V + {1 \over \rho }div(P \cdot \overrightarrow V ) + {{dq} \over {dt}} dtd(cvT+2V2)=F V +ρ1div(PV )+dtdq


总能量变化率

伯努利方程
d d t ( V 2 2 + Φ + p ρ ) = 0 {d \over {dt}}{\kern 1pt} {\kern 1pt} ({{{V^2}} \over 2}{\kern 1pt} + \Phi {\kern 1pt} + {p \over \rho }) = 0 dtd(2V2+Φ+ρp)=0



Chapter 5 涡旋动力学基础

5.1环流定理

1.开尔文定理
理想正压流体在有势力作用下,速度环流不随时间变化
d Γ d t = 0 {{d\Gamma } \over {dt}} = 0 dtdΓ=0

Chapter 7

浅水重力表面波闭合方程组
∂ u ′ ∂ t = − g ∂ h ′ ∂ x {{\partial u'} \over {\partial t}} = - g{{\partial h'} \over {\partial x}} tu=gxh
∂ h ′ ∂ t = − H ∂ u ′ ∂ x {{\partial h'} \over {\partial t}} = - H{{\partial u'} \over {\partial x}} th=Hxu

浅水重力表面波的相速
c 2 = g H {c^2} = gH c2=gH
c = ± g H c = \pm \sqrt {gH} c=±gH

界面波
发生在上轻下重的2种流体分界面上的波
g ′ = g ( 1 − ρ 1 ρ 2 )          修 正 重 力 g' = g(1 - {{\rho 1} \over {\rho 2}})\; \;\;\; 修正重力 g=g(1ρ2ρ1)

7.3 波动能量和能量的传播速度

动能
K = 1 4 ρ g A 2 L x K = {1 \over 4}\rho g{A^2}{L_x} K=41ρgA2Lx

位能
Π = 1 4 ρ g A 2 L x \Pi = {1 \over 4}\rho g{A^2}{L_x} Π=41ρgA2Lx
与振幅的平方成正比

群速:波包际线移动的速度,也是波能量移动的速度
c g = d σ d k {c_g} = {{d\sigma } \over {dk}} cg=dkdσ

Chapter 8

不可压流体
平均运动的连续方程
∂ u ‾ ∂ x + ∂ v ‾ ∂ y + ∂ w ‾ ∂ z = 0 {{\partial \overline u } \over {\partial x}} + {{\partial \overline v } \over {\partial y}} + {{\partial \overline w } \over {\partial z}} = 0 xu+yv+zw=0

脉动运动的连续方程
∂ u ′ ∂ x + ∂ v ′ ∂ y + ∂ w ′ ∂ z = 0 {{\partial u'} \over {\partial x}} + {{\partial v'} \over {\partial y}} + {{\partial w'} \over {\partial z}} = 0 xu+yv+zw=0

不可压流体作湍流运动时,其平均速度和脉动速度的散度均为0

  • 6
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值