热力学与统计物理

热力学与统计物理

NJU AS 2021 Taught by YiZhang

Chapter 1

1.三个物理量

(1)体胀系数
α = 1 V ( ∂ V ∂ T ) p \alpha = {1 \over V}{({{\partial V} \over {\partial T}})_p} α=V1(TV)p
在压强保持不变的条件下,温度升高1K所引起的物体体积的相对变化

(2)压强系数

β = 1 p ( ∂ p ∂ T ) V \beta = {1 \over p}{({{\partial p} \over {\partial T}})_V} β=p1(Tp)V

(3)等温压缩系数

κ T = − 1 V ( ∂ V ∂ p ) T {\kappa _T} = - {1 \over V}{({{\partial V} \over {\partial p}})_T} κT=V1(pV)T
注意负号

(4)偏导数之间的关系 α = κ T β p \alpha = {\kappa _T}\beta p α=κTβp

2.范式方程

( p + a n 2 V 2 ) ( V − n b ) = n R T (p + {{a{n^2}} \over {{V^2}}})(V - nb) = nRT (p+V2an2)(Vnb)=nRT

3.功

δ W = − p d V \delta W = - pdV δW=pdV
这是外界对系统做功,注意负号



表面张力有使液面收缩的趋势,所以边伸长时,外界克服表面张力做功
δ W = 2 σ l d x \delta W = 2\sigma ldx δW=2σldx
和气体那一系列是相反的

液膜面积变化 d A = 2 l d x dA = 2ldx dA=2ldx δ W = σ d A \delta W = \sigma dA δW=σdA

4.热力学第一定律

d U = δ Q + δ W dU = \delta Q + \delta W dU=δQ+δW

5.热容

C V = ( ∂ U ∂ T ) V {C_V} = {({{\partial U} \over {\partial T}})_V} CV=(TU)V C p = ( ∂ H ∂ T ) p {C_p} = {({{\partial H} \over {\partial T}})_p} Cp=(TH)p
这是定义式,所以使用时不需要其他条件



对于理想气体

C p − C V = n R {C_p} - {C_V} = nR CpCV=nR C V = n R γ − 1 C p = γ n R γ − 1 {C_V} = {{nR} \over {\gamma - 1}}\quad \quad {C_p} = \gamma {{nR} \over {\gamma - 1}} CV=γ1nRCp=γγ1nR

6.理想气体的内能

理想气体内能只是温度的函数

7.理想气体的绝热过程

p V γ = c o n s t p{V^\gamma } = const pVγ=const
牛顿声速公式
a = d p d ρ a = \sqrt {{{dp} \over {d\rho }}} a=dρdp
由声速确定γ
a 2 = γ p ρ {a^2} = \gamma {p \over \rho } a2=γρp

8.卡诺热机

可逆热机的效率
η = 1 − T 2 T 1 \eta = 1 - {{{T_2}} \over {{T_1}}} η=1T1T2
克劳修斯不等式
∮ δ Q T ≤ 0 \oint {{{\delta Q} \over T} \le 0} TδQ0可逆过程等于0
对于可逆过程,积分的值与路径无关

9.熵

定义式
d S = δ Q r T dS = {{\delta {Q_r}} \over T} dS=TδQr
必须选取可逆过程来计算熵

理想气体熵的公式
S = C V ln ⁡ T + n R ln ⁡ V + S 0 S = {C_V}\ln T + nR\ln V + {S_0} S=CVlnT+nRlnV+S0 S = C p ln ⁡ T − n R ln ⁡ p + S 0 S = {C_p}\ln T - nR\ln p + {S_0} S=CplnTnRlnp+S0

对于可逆过程
d U = T d S − p d V dU = TdS - pdV dU=TdSpdV

10.热力学第二定律

d S ≥ δ Q T dS \ge {{\delta Q} \over {T}} dSTδQ d U ≤ T d S − p d V dU \le TdS - pdV dUTdSpdV
对于绝热过程有:
d S ≥ 0 dS \ge 0 dS0
经绝热过程后,系统的熵永不减小

11.自由能和吉布斯函数

自由能
F = U − T S F = U - TS F=UTS
吉布斯函数
G = U − T S + P V = H − T S G = U - TS + PV = H - TS G=UTS+PV=HTS

Chapter 2

1.麦氏关系

T S T\quad S TS P V P\quad V PV

( ∂ T ∂ p ) S = ( ∂ V ∂ S ) p {({{\partial T} \over {\partial p}})_S} = {({{\partial V} \over {\partial S}})_p} (pT)S=(SV)p
( ∂ T ∂ V ) S = − ( ∂ p ∂ S ) V {({{\partial T} \over {\partial V}})_S} = - {({{\partial p} \over {\partial S}})_V} (VT)S=(Sp)V
左边一列是强度量,右边一列是广延量
交叉会产生负号

2.热容

C V = ( ∂ U ∂ T ) V = T ( ∂ S ∂ T ) V {C_V} = {({{\partial U} \over {\partial T}})_V} = T{({{\partial S} \over {\partial T}})_V} CV=(TU)V=T(TS)V
C p = ( ∂ H ∂ T ) p = T ( ∂ S ∂ T ) p {C_p} = {({{\partial H} \over {\partial T}})_p} = T{({{\partial S} \over {\partial T}})_p} Cp=(TH)p=T(TS)p

3.可逆的等焓过程

焦汤系数:在焓不变的条件下,气体温度随压强的变化率
μ = ( ∂ T ∂ p ) H = V C p ( T α − 1 ) \mu = {({{\partial T} \over {\partial p}})_H} = {V \over {{C_p}}}(T\alpha - 1) μ=(pT)H=CpV(Tα1)

4.绝热膨胀过程

( ∂ T ∂ p ) S = V T α C p {({{\partial T} \over {\partial p}})_S} = {{VT\alpha } \over {{C_p}}} (pT)S=CpVTα

5.热辐射的热力学理论

5.1定义辐射能量密度为u u = a T 4 u = a{T^4} u=aT4
p = 1 3 u = 1 3 a T 4 p = {1 \over 3}u = {1 \over 3}a{T^4} p=31u=31aT4
5.2内能是温度和体积的函数,不同于理想气体
U ( T , V ) = u ( T ) V = a T 4 V U(T,V) = u(T)V = a{T^4}V U(T,V)=u(T)V=aT4V
5.3熵 S = 4 3 a T 3 V S = {4 \over 3}a{T^3}V S=34aT3V
在可逆绝热过程中辐射场的熵不变,故有
T 3 V = c o n s t {T^3}V = const T3V=const
5.4吉布斯函数
G = U − T S + p V = a T 4 V − T 4 3 a T 3 V + 1 3 a T 4 V = 0 G = U - TS + pV = a{T^4}V - T{4 \over 3}a{T^3}V + {1 \over 3}a{T^4}V = 0 G=UTS+pV=aT4VT34aT3V+31aT4V=0
平衡辐射的吉布斯函数为0

Chapter 3

1.热动平衡判据

1.1熵判据

只适用于孤立系统
平衡时,熵取极大值
δ S = 0 δ 2 S ≤ 0 \delta S = 0\quad {\delta ^2}S \le 0 δS=0δ2S0
同理,当熵处于极小值时,孤立系统居于不稳定平衡的状态

1.2自由能判据

δ F = 0 δ 2 F ≥ 0 \delta F = 0\quad {\delta ^2}F \ge 0 δF=0δ2F0
等温等容条件下,系统总是朝着自由能减小的方向进行

1.3 吉布斯函数判据

等温等压条件下,系统总是朝着吉布斯函数减小的方向进行

1.4 内能判据

等熵等容条件下,系统总是朝着内能减小的方向进行

1.5 焓判据

等熵等压条件下,系统总是朝着焓减小的方向进行

小结:除了熵判据,其他判据均为二阶偏导大于等于0 也就是物理量居于最低点时系统稳定


平衡的稳定性条件
T = T 0 , p = p 0 T = {T_0},\quad p = {p_0} T=T0,p=p0 C V > 0 , ( ∂ p ∂ V ) T < 0 {C_V} > 0,\quad {({{\partial p} \over {\partial V}})_T} < 0 CV>0,(Vp)T<0
平衡时子系统与介质有相同的温度和压强

2.开系的热力学基本方程

d G = − S d T + V d p + μ d n dG = - SdT + Vdp + \mu dn dG=SdT+Vdp+μdn
μ = ( ∂ G ∂ n ) T , p \mu = {({{\partial G} \over {\partial n}})_{T,p}} μ=(nG)T,p
化学势:在温度和压力不变的条件下,增加1mol物质时吉布斯函数的改变
d U = T d S − p d V + μ d n dU = TdS - pdV + \mu dn dU=TdSpdV+μdn d H = T d S + V d p + μ d n dH = TdS + Vdp + \mu dn dH=TdS+Vdp+μdn d F = − S d T − p d V + μ d n dF = - SdT - pdV + \mu dn dF=SdTpdV+μdn
巨热力势 J = F − μ n J = F - \mu n J=Fμn d J = − S d T − p d V − n d μ dJ = - SdT - pdV - nd\mu dJ=SdTpdVndμ

3.单元系的复相平衡条件

热平衡条件 T α = T β {T^\alpha } = {T^\beta } Tα=Tβ
力学平衡条件 p α = p β {p^\alpha } = {p^\beta } pα=pβ
相变平衡条件 μ α = μ β {\mu ^\alpha } = {\mu ^\beta } μα=μβ

4.Clapeyron Equation

化学势的全微分
d μ = − S m d T + V m d p d\mu = - {S_m}dT + {V_m}dp dμ=SmdT+Vmdp
由上式可推出 d p d T = S m β − S m α V m β − V m α = 1 T T S m β − T S m α V m β − V m α {{dp} \over {dT}} = {{S_m^\beta - S_m^\alpha } \over {V_m^\beta - V_m^\alpha }} = {1 \over T}{{TS_m^\beta - TS_m^\alpha } \over {V_m^\beta - V_m^\alpha }} dTdp=VmβVmαSmβSmα=T1VmβVmαTSmβTSmα
定义相变潜热 L = T ( S m β − S m α ) L = T(S_m^\beta - S_m^\alpha ) L=T(SmβSmα)
综上
d p d T = L T ( V m β − V m α ) {{dp} \over {dT}} = {L \over {T(V_m^\beta - V_m^\alpha )}} dTdp=T(VmβVmα)L
得出了两相平衡曲线的斜率

5.相变的分类

第一类相变:在相变点两相的化学势连续,但化学势的一阶偏导数存在突变
第二类相变:在相变点,两相的化学势和一阶偏导数连续,但化学势的二阶偏导数存在突变

Chapter 4

d G = − S d T + V d p + ∑ i μ i d n i dG = - SdT + Vdp + \sum\limits_i {{\mu _i}d{n_i}} dG=SdT+Vdp+iμidni
G = ∑ i n i μ i G = \sum\limits_i {{n_i}{\mu _i}} G=iniμi
吉布斯关系: S d T − V d p + ∑ i n i d μ i = 0 SdT - Vdp + \sum\limits_i {{n_i}d{\mu _i}} = 0 SdTVdp+inidμi=0
对1个相的k个组元,k+2个强度参量中,只有k+1个是独立的

2.吉布斯相律
f = ( k + 2 ) − φ f = (k + 2) - \varphi f=(k+2)φ
多元复相系有φ个相,每相有k个组元,组元间不发生化学反应
f是多元复相系的自由度数




Chapter 6

玻尔兹曼系统:全同可分辨,状态相容

玻色系统:全同不可分辨,状态相容

费米系统:全同不可分辨,泡利不相容


6.2 粒子运动状态的量子描述

自由粒子态密度(3维)
D ( ε ) = 2 π V h 3 ( 2 m ) 3 2 ε 1 2 D(\varepsilon ) = {{2\pi V} \over {{h^3}}}{(2m)^{{3 \over 2}}}{\varepsilon ^{{1 \over 2}}} D(ε)=h32πV(2m)23ε21

6.3 系统微观运动状态的描述

1.微观粒子全同性原理:
全同粒子不可分辨,交换2个全同粒子,不改变系统的微观运动状态
根本原因:量子粒子具有波粒二象性,它的运动不是轨道运动,原则上不能跟踪

2.自然界中微观粒子可分为2类

费米子:自旋量子数为半整数 电子,质子
~~
玻色子:自旋量子数为整数 光子

玻色子构成的复合粒子是玻色子
偶数个费米子构成的复合粒子是玻色子,奇数个费米子构成的复合粒子是费米子

玻尔兹曼系统:粒子可分辨,每一个体量子态容纳的粒子数不受限
~~
玻色系统:粒子不可分辨
~~
费米系统:粒子不可分辨,泡利不相容

6.5 分布和微观状态

约束条件:
∑ l a l = N \sum\limits_l {{a_l} = N} lal=N
∑ l a l ε l = E \sum\limits_l {{a_l}{\varepsilon _l} = E} lalεl=E

玻尔兹曼分布
a l = ω l e − α − β ε l , β = 1 k T {a_l} = {\omega _l}{e^{ - \alpha - \beta {\varepsilon _l}}},\quad \beta = {1 \over {kT}} al=ωleαβεl,β=kT1


6.7 玻色统计和费米统计

玻色-爱因斯坦分布
a l = ω l e α + β ε l − 1 {a_l} = {{{\omega _l}} \over {{e^{\alpha + \beta {\varepsilon _l}}} - 1}} al=eα+βεl1ωl

费米-狄拉克分布
a l = ω l e α + β ε l + 1 {a_l} = {{{\omega _l}} \over {{e^{\alpha + \beta {\varepsilon _l}}} + 1}} al=eα+βεl+1ωl

在这里插入图片描述

Chapter 7

7.1 热力学量的统计表达式

U = − N ∂ ∂ β ln ⁡ Z 1 U = - N{\partial \over {\partial \beta }}\ln {Z_1} U=NβlnZ1
广 义 力 : Y = − N β ∂ ∂ y ln ⁡ Z 1 广义力: Y = - {N \over \beta }{\partial \over {\partial y}}\ln {Z_1} 广:Y=βNylnZ1

p = N β ∂ ∂ V ln ⁡ Z 1 p = {N \over \beta }{\partial \over {\partial V}}\ln {Z_1} p=βNVlnZ1
S = N k ( ln ⁡ Z 1 − β ∂ ∂ β ln ⁡ Z 1 ) S = Nk(\ln {Z_1} - \beta {\partial \over {\partial \beta }}\ln {Z_1}) S=Nk(lnZ1ββlnZ1)

7.2 理想气体的物态方程

1.在dxdydzdpxdpydpz范围内,分子可能的微观状态数
d x d y d z d p x d p y d p z h 3 {{dxdydzd{p_x}d{p_y}d{p_z}} \over {{h^3}}} h3dxdydzdpxdpydpz

2.求配分函数
Z 1 = 1 h 3 ∫  ⁣ ⁣ ⁣ ∫  ⁣ ⁣ ⁣ ∫ d x d y d z ∫ − ∞ ∞ e − β 2 m p x 2 d p x ∫ − ∞ ∞ e − β 2 m p y 2 d p y ∫ − ∞ ∞ e − β 2 m p z 2 d p z {Z_1} = {1 \over {{h^3}}}\int\!\!\!\int\!\!\!\int {dxdydz} \int\limits_{ - \infty }^\infty {{e^{ - {\beta \over {2m}}p_x^2}}} d{p_x}\int\limits_{ - \infty }^\infty {{e^{ - {\beta \over {2m}}p_y^2}}} d{p_y}\int\limits_{ - \infty }^\infty {{e^{ - {\beta \over {2m}}p_z^2}}} d{p_z} Z1=h31dxdydze2mβpx2dpxe2mβpy2dpye2mβpz2dpz
Z 1 = V h 3 ( 2 m π β ) 3 2 {Z_1}= {V \over {{h^3}}}{({{2m} \over {\pi \beta }})^{{3 \over 2}}} Z1=h3V(πβ2m)23

7.3 麦克斯韦速度分布律

1.表示方法一:单位体积,速度在dvxdvydvz范围内的分子数
f = n ( m 2 π k T ) 3 2 e − m 2 k T ( v x 2 + v y 2 + v z 2 ) f = n{({m \over {2\pi kT}})^{{3 \over 2}}}{e^{ - {m \over {2kT}}(v_x^2 + v_y^2 + v_z^2)}} f=n(2πkTm)23e2kTm(vx2+vy2+vz2)

单 位 体 积 内 , 速 度 在 d v x d v y d v z 内 的 分 子 数 单位体积内,速度在d{v_x}d{v_y}d{v_z}内的分子数 dvxdvydvz

表示方法二:单位体积,速率在dv内的分子数
f = 4 π n ( m 2 π k T ) 3 2 e − m 2 k T v 2 v 2 f = 4\pi n{({m \over {2\pi kT}})^{{3 \over 2}}}{e^{ - {m \over {2kT}}{v^2}}}{v^2} f=4πn(2πkTm)23e2kTmv2v2

注意单位体积


2.归一化条件 ∫  ⁣ ⁣ ⁣ ∫  ⁣ ⁣ ⁣ ∫ f d v x d v y d v z = n \int\!\!\!\int\!\!\!\int {fd} {v_x}d{v_y}d{v_z} = n fdvxdvydvz=n

7.4 能量均分定理

对于处在温度为T的平衡状态的经典系统,粒子能量中每一个平方项的平均值等于1/2KT

固体
U = 3 N k T U = 3NkT U=3NkT C V = 3 N k {C_V} = 3Nk CV=3Nk C p − C V = T V α 2 K T {C_p} - {C_V} = {{TV{\alpha ^2}} \over {{K_T}}} CpCV=KTTVα2

理论和实验结果相比:
1.在室温和高温范围符合得很好
2.在低温范围内,实验发现固体的热容随温度降低得很快

在3K以上低温区,自由电子的热容量远小于离子振动的热容量,可以忽略不计
在3K以下低温区,自由电子的热容量将大于离子振动的热容量,成为对金属热容量的主要贡献

量子统计和经典统计处理热容量结果的差异:
如果任意2个能级的能量差远小于热运动能量kT,粒子的能量就能看作准连续的变量,这时量子统计和经典统计方法处理热容量结果相同,否则则不同

Chapter 9

1.系综概述

孤立系统组成的微正则系综
恒温封闭系统组成的正则系综
开放系统组成的巨正则系综


@
  • 8
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值