贴一下我去年9月份写的博客
三道编程题,一道数学题,两道图论,哎嘿嘿,我就是不会做,哎嘿嘿,哭了。。。
一.最小值
牛牛给度度熊出了一个数学题,牛牛给定数字n,m,k,希望度度熊能找到一组非负整数a,b满足(n−a)(m−b)≤k且a+b尽量小。
度度熊把这个问题交给了你,希望你能帮他解决。
那么做这种题目,一看就是数学题,当时我直接看了几眼没思路就跳了。没想到是线性规划方程
其实要把这个方程拆开看
k>=(n-a)(m-b)=nm-ma-nb+ab=m(n-a)+b(a-n)
=m(n-a-b)+b(a-n+m) // 这一步是关键,如果没有想到这一步,那么后面的就更想不到了
=m(n-(a+b)) + b ((m-n) + a)
> = m ( n − ( a + b ) ) >= m(n - (a+b)) >=m(n−(a+b))
是不是很像初高中做的不等式。。。呵呵呵import java.util.Scanner; // 注意类名必须为 Main, 不要有任何 package xxx 信息 public class Main { public static void main(String[] args) { Scanner in = new Scanner(System.in); long n = in.nextLong(); long m = in.nextLong(); long k = in.nextLong(); /** (n - k / m) >= a+ b,我们要让两数更小那个降低 更快,那么其实让n更小,降低得会更快点,这个也是一个关键点 */ if(n > m) { long temp n = m; m = temp; } // 所以经过上面分析,列式子可以得 System.out.print(n - k / m); } }
二.返回公司
import java.util.*;
// 注意类名必须为 Main, 不要有任何 package xxx 信息
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int T = in.nextInt();
while(T > 0) {
T--;
int n =in.nextInt();
int m = in.nextInt();
ArrayList<Integer>[] graph = new ArrayList[n + 1];
for(int i = 1 ;i <= n; i++) {
graph[i] = new ArrayList<>();
}
for(int i = 0; i < m;i ++) {
int a = in.nextInt();
int b = in.nextInt();
graph[a].add(b);
graph[b].add(a);
}
List<Integer> now = graph[1];
boolean flag = false;
for(int i : now) {
List<Integer> next = graph[i];
if(next.contains(n) || i == n) {
flag = true;
break;
}
}
if(flag) { // 这个输出一定要放外面,放里面的话如果第一个不符合就会跳出来,
// 就检测不到后面的了,相当于每次都检测第一个
System.out.println("POSSIBLE");
} else {
System.out.println("IMPOSSIBLE");
}
}
}
}
不愧是2020的题,虽然是不同批次的,但是跟之前做的那套题的算法解法差不多,之前那道题可以点击这里
3.
上网找了挺久的,都没有找到解析,所以决定问聪明的chatgpt(后续来了,问了ChatGPT也也没问出来,答案都是错的,就连已有的测试用例都过不了)