食物链(带权并查集)

题目链接:https://www.acwing.com/problem/content/242/

题目
动物王国中有三类动物 A A A, B B B, C C C,这三类动物的食物链构成了有趣的环形。

A A A B B B B B B C C C C C C A A A

现有 N N N 个动物,以 1 ∼ N 1∼N 1N 编号。

每个动物都是 A A A, B B B, C C C 中的一种,但是我们并不知道它到底是哪一种。

有人用两种说法对这 N N N 个动物所构成的食物链关系进行描述:

第一种说法是 1 X Y,表示 X X X Y Y Y 是同类。

第二种说法是 2 X Y,表示 X X X Y Y Y

此人对 N N N 个动物,用上述两种说法,一句接一句地说出 K K K 句话,这 K K K 句话有的是真的,有的是假的。

当一句话满足下列三条之一时,这句话就是假话,否则就是真话。

  1. 当前的话与前面的某些真的话冲突,就是假话;
  2. 当前的话中 X X X Y Y Y N N N 大,就是假话;
  3. 当前的话表示 X X X X X X,就是假话。

你的任务是根据给定的 N N N K K K 句话,输出假话的总数。

输入格式
第一行是两个整数 N N N K K K,以一个空格分隔。

以下 K K K 行每行是三个正整数 D D D X X X Y Y Y,两数之间用一个空格隔开,其中 D D D 表示说法的种类。

D = 1 D=1 D=1,则表示 X X X Y Y Y 是同类。

D = 2 D=2 D=2,则表示 X X X Y Y Y

输出格式
只有一个整数,表示假话的数目。

数据范围
1 ≤ N ≤ 50000 , 1≤N≤50000, 1N50000,
0 ≤ K ≤ 100000 0≤K≤100000 0K100000
输入样例:

100 7
1 101 1 
2 1 2
2 2 3 
2 3 3 
1 1 3 
2 3 1 
1 5 5

输出样例:

3
思路:

因为每个动物都是 X X X Y Y Y Z Z Z 中的一种
可以利用并查集,维护每个点到根节点的距离

到根节点的距离模 3 3 3 1 1 1 表示吃根节点 记为 X X X
到根节点的距离模 3 3 3 2 2 2 表示吃 X X X 记为 Y Y Y
到根节点的距离模 3 3 3 0 0 0 表示吃 Y Y Y ,和根节点是同类 记为 Z Z Z

那么两个点( X X X Y Y Y )的关系的两种情况就有规律

情况 1 1 1 X X X Y Y Y 是同类

X X X Y Y Y 是同类
那么有
d [ x ]   %   3 = 0   ,   d [ y ]   %   3 = 0 d[x]\ \%\ 3 = 0\ ,\ d[y]\ \%\ 3 = 0 d[x] % 3=0 , d[y] % 3=0
也就是
( d [ x ] − d [ y ] )   %   3 = 0 (d[x]-d[y])\ \%\ 3 = 0 (d[x]d[y]) % 3=0

情况 2 2 2 X X X Y Y Y

X X X Y Y Y
那么有
( d [ x ] − d [ y ] )   %   3 = 1 (d[x] - d[y])\ \%\ 3 = 1 (d[x]d[y]) % 3=1
也就是
( d [ x ] − d [ y ] − 1 )   %   3 = 0 (d[x] - d[y] - 1)\ \%\ 3 = 0 (d[x]d[y]1) % 3=0

接下来每输入一句话,判断是否矛盾
第二种矛盾直接判断即可

对于剩下矛盾的处理方法:
先找到 X X X Y Y Y 的根节点

如果根节点相同,就说明这两个点在一棵树上
那么只要不满足对应的式子,就说明这句话和前面的话矛盾

如果根节点不同,就说明不在一棵树上,相当于这句话前面没人说过,那一定是真话,不过我们要把这两个点合并成一棵树

合并的办法就是直接让 X X X 的根节点指向 Y Y Y 的根节点
在这里插入图片描述

如图所示,此时我们要更新 X X X 的根节点到 Y Y Y 的根节点的距离

以情况 1 1 1 ( X X X Y Y Y 是同类)来举例
此时应该满足
( d [ x ]   +   ? )   %   3 = d [ y ]   %   3 (d[x]\ +\ ?)\ \%\ 3 = d[y]\ \%\ 3 (d[x] + ?) % 3=d[y] % 3

( d [ x ]   +   ?   −   d [ y ] )   %   3 = 0 (d[x]\ +\ ?\ -\ d[y])\ \%\ 3 = 0 (d[x] + ?  d[y]) % 3=0
那么   ?   = d [ y ] − d [ x ] \ ?\ = d[y] - d[x]  ? =d[y]d[x]
也就是说 X X X 的根节点到 Y Y Y 的根节点的距离为 d [ y ] − d [ x ] d[y] - d[x] d[y]d[x]
d [ p x ] = d [ y ] − d [ x ] d[px] = d[y] - d[x] d[px]=d[y]d[x]

情况 2 2 2 同理

AC代码

#include <iostream>

using namespace std;

const int N = 50010;

/*

到根节点的距离模3为1表示吃根节点 记为X
到根节点的距离模3为2表示吃X 记为Y
到根节点的距离模3为0表示吃Y,和根节点是同类 记为Z

x <- y <- z <- x

*/

int n,m,ans;
int p[N],d[N]; // d存的是每个点到根节点的距离

int find(int x)
{
    if(p[x] != x)
    {
        int u = find(p[x]); // 先递归,这样d[p[x]]就能更新成到根节点的距离
        d[x] += d[p[x]];
        p[x] = u;
    }
    return p[x];
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i = 1; i <= n; i++) p[i] = i;
    
    while(m--)
    {
        int t,x,y;
        scanf("%d%d%d",&t,&x,&y);
        if(x > n || y > n) ans++;
        else
        {
            int px,py;
            px = find(x);
            py = find(y);
            if(t == 1) // X和Y是同类
            {
                if(px == py && (d[y] - d[x]) % 3) // 在一棵树上
                {
                    // d[px] % 3 = 0,d[py] % 3 = 0
                    ans++;
                }
                else if(px != py) // 不在一棵树上 合并两棵树
                {
                    /*
                    
                    (d[x] + ?) % 3 = d[y] % 3 即 (d[x] + ? - d[y]) % 3 = 0
                    
                    ? = d[y] - d[x]
                    
                    */
                    p[px] = py;
                    d[px] = d[y] - d[x];
                }
            }
            else // t = 2 // X吃Y
            {
                if(px == py && (d[x] - d[y] - 1) % 3) // 在一棵树上
                {
                    // (d[x] - d[y]) % 3 = 1 即 (d[x] - d[y] - 1) % 3 = 0
                    ans++;
                }
                else if(px != py) // 不在一棵树上 合并两棵树
                {
                    /*
                    
                    (d[x] + ?) % 3 = d[y] % 3 + 1 即 (d[x] + ? - d[y] - 1) % 3 = 0
                    
                    ? = d[y] - d[x] + 1
                    
                    */
                    p[px] = py;
                    d[px] = d[y] - d[x] + 1;
                }
            }
        }
    }
    printf("%d\n",ans);
    return 0;
}
带权并查集(Weighted Union-Find)是在普通并查集的基础上进行了扩展,它在每个节点上存储了额外的权重信息。带权并查集主要用于解决一些需要考虑权重或者秩的问题,例如求解最小生成树、最大连通子图等。 在普通并查集中,每个节点都有一个父节点指针,用于表示该节点所属的集合。在带权并查集中,除了父节点指针外,每个节点还有一个权重值。这个权重值可以是任意类型的,例如整数、浮点数等,根据问题的需求而定。 带权并查集的基本操作与普通并查集类似,包括初始化、查找和合并: 1. 初始化:对于每个元素,将其视为一个独立的集合,即每个元素的父节点都是它自己,同时将权重值初始化为初始值。 2. 查找操作(Find):查找元素所属的集合,即找到元素的根节点。通过沿着父节点指针链向上遍历,直到找到根节点。返回根节点的同时可以累加路径上所有节点的权重值,以实现路径压缩和权重更新。 3. 合并操作(Merge):将两个集合合并成一个集合,即将一个集合的根节点的父节点指向另一个集合的根节点。在合并操作中,需要考虑集合的权重信息。通常,我们将权重较小的集合合并到权重较大的集合上,并更新根节点的权重值。 带权并查集的优化策略主要包括按秩合并和路径压缩。按秩合并是根据集合的秩(树的高度或节点数量)来进行合并操作,将秩较小的集合合并到秩较大的集合上,以保持树的平衡。路径压缩则是在查找操作中,将经过的每个节点直接连接到根节点,并更新路径上所有节点的权重值。 带权并查集的时间复杂度也取决于查找操作的路径长度,但由于路径压缩和按秩合并的优化,一般情况下可以达到接近常数时间复杂度。 带权并查集是一个非常有用的数据结构,可以解决一些需要考虑权重或秩的问题。通过存储额外的权重信息,并结合路径压缩和按秩合并等优化策略,可以提高算法的效率。 希望这个解释对您有所帮助!如果您还有其他问题,请随时提问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值