山东大学软件工程应用与实践——GMSSL开源库(十一)——重要的大素数

2021SC@SDUSC

大素数产生的思想

在所有的密码算法中,甚至比大整数还要重要的就是大素数。在经典RSA算法中大素数起着至关重要的作用、SM9算法中所用到的有限域问题、数学方面的难解问题等,大都依托于素数特别是大素数,所以大素数的产生、验证、计算等都是密码学主要关注的问题,特别是在程序中代码的快速实现。
大素数的第一个特征就是“大”!

首先如何生成“大数”,也就是我上一篇提到的big number,就是一个非常值得研究的问题。在密码学中,为了保证安全性,这个生成的大数,不仅仅要“大”,而且还要“随机”。所以随机数生成器的构造,就一直在研究中。虽然高级编程语言中提供了rand函数,但是如果所需的数较大,就会发现所产生的数其实会进行循环,并没有实现真正的随机。现在有一些比较常用的伪随机发生器,例如Lehmer的
在这里插入图片描述

或者BBS发生器等……一般可以通过随机数的随机性和不可预测性检测,虽然没有实现真正的随机数,但在实际应用中运行快,在一定的条件下可以当做随机数使用。真随机数发生器也存在,只不过周期不定、运行速度慢等原因,并没有普遍的应用于实际场景中。

当产生了一个足够大的数之后,大素数的“大”已经满足,接下来就是“素”的判定。当前使用较为普遍的是Miller-Rabin的素性检测算法,下面的算法是NIST网站上面fips_186-3文档中提到的Miller-Rabin的素性检测算法,网站为:https://csrc.nist.gov/publications/detail/fips/186/3/archive/2009-06-25
在这里插入图片描述
在这里插入图片描述
执行一次Miller-Rabin算法,就有3/4的概率确定一个数有可能是素数。多执行几次,就可以概率上忽略一个数不是素数的可能,也就是说可以确定一个数是否为素数。在openssl的源码实现中,根据所生成的大数的位数不同,选择不同轮数的Miller-Rabin算法,就可以成功生成大素数了。

生成大素数的代码实现

Openssl生成大素数的步骤和大素数产生的步骤相同,即“生成大随机数——素性检测——确定为大素数”。

第一步,生成大随机数。\openssl-master\crypto\bn\bn_rand.c

在函数static int bnrand(BNRAND_FLAG flag, BIGNUM *rnd, int bits, int top, int bottom, unsigned int strength, BN_CTX *ctx)
中下面的函数片段,完成了第一步的内容,即产生了大素数。

/* make a random number and set the top and bottom bits */
    b = flag == NORMAL ? RAND_bytes_ex(libctx, buf, bytes, strength)
                       : RAND_priv_bytes_ex(libctx, buf, bytes, strength);
    if (b <= 0)
        goto err;

第二步,使用miller_rabin素性检测的算法对生成的BIGNUM w进行检测
在openssl中,使用的是 FIPS 186-4文件中提到的Enhanced Miller-Rabin Probabilistic Primality Test,也就是加强版的Miller-Rabin素性检测。
文档中所指定的算法过程如下:
在这里插入图片描述

int ossl_bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx,
                                  BN_GENCB *cb, int enhanced, int *status)
{
    int i, j, a, ret = 0;
    BIGNUM *g, *w1, *w3, *x, *m, *z, *b;
    BN_MONT_CTX *mont = NULL;

    /* w must be odd */
    if (!BN_is_odd(w))
        return 0;

    BN_CTX_start(ctx);
    g = BN_CTX_get(ctx);
    w1 = BN_CTX_get(ctx);
    w3 = BN_CTX_get(ctx);
    x = BN_CTX_get(ctx);
    m = BN_CTX_get(ctx);
    z = BN_CTX_get(ctx);
    b = BN_CTX_get(ctx);

    if (!(b != NULL
            /* w1 := w - 1 */
            && BN_copy(w1, w)
            && BN_sub_word(w1, 1)
            /* w3 := w - 3 */
            && BN_copy(w3, w)
            && BN_sub_word(w3, 3)))
        goto err;

    /* check w is larger than 3, otherwise the random b will be too small */
    if (BN_is_zero(w3) || BN_is_negative(w3))
        goto err;

    /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */
    a = 1;
    while (!BN_is_bit_set(w1, a))
        a++;
    /* (Step 2) m = (w-1) / 2^a */
    if (!BN_rshift(m, w1, a))
        goto err;

    /* Montgomery setup for computations mod a */
    mont = BN_MONT_CTX_new();
    if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx))
        goto err;

    if (iterations == 0)
        iterations = bn_mr_min_checks(BN_num_bits(w));

    /* (Step 4) */
    for (i = 0; i < iterations; ++i) {
        /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */
        if (!BN_priv_rand_range_ex(b, w3, 0, ctx)
                || !BN_add_word(b, 2)) /* 1 < b < w-1 */
            goto err;

        if (enhanced) {
            /* (Step 4.3) */
            if (!BN_gcd(g, b, w, ctx))
                goto err;
            /* (Step 4.4) */
            if (!BN_is_one(g)) {
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
                ret = 1;
                goto err;
            }
        }
        /* (Step 4.5) z = b^m mod w */
        if (!BN_mod_exp_mont(z, b, m, w, ctx, mont))
            goto err;
        /* (Step 4.6) if (z = 1 or z = w-1) */
        if (BN_is_one(z) || BN_cmp(z, w1) == 0)
            goto outer_loop;
        /* (Step 4.7) for j = 1 to a-1 */
        for (j = 1; j < a ; ++j) {
            /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */
            if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
                goto err;
            /* (Step 4.7.3) */
            if (BN_cmp(z, w1) == 0)
                goto outer_loop;
            /* (Step 4.7.4) */
            if (BN_is_one(z))
                goto composite;
        }
        /* At this point z = b^((w-1)/2) mod w */
        /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */
        if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx))
            goto err;
        /* (Step 4.10) */
        if (BN_is_one(z))
            goto composite;
        /* (Step 4.11) x = b^(w-1) mod w */
        if (!BN_copy(x, z))
            goto err;
composite:
        if (enhanced) {
            /* (Step 4.1.2) g = GCD(x-1, w) */
            if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx))
                goto err;
            /* (Steps 4.1.3 - 4.1.4) */
            if (BN_is_one(g))
                *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME;
            else
                *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR;
        } else {
            *status = BN_PRIMETEST_COMPOSITE;
        }
        ret = 1;
        goto err;
outer_loop: ;
        /* (Step 4.1.5) */
        if (!BN_GENCB_call(cb, 1, i))
            goto err;
    }
    /* (Step 5) */
    *status = BN_PRIMETEST_PROBABLY_PRIME;
    ret = 1;
err:
    BN_clear(g);
    BN_clear(w1);
    BN_clear(w3);
    BN_clear(x);
    BN_clear(m);
    BN_clear(z);
    BN_clear(b);
    BN_CTX_end(ctx);
    BN_MONT_CTX_free(mont);
    return ret;
}

该函数完全按照fips国际标准进行的,只要了解了Miller-Rabin的算法,代码对每一步分的比较详细,还有注释辅助理解,分析起来问题不大。

第三步,经过多轮素性检测的某个大整数,就可以当做素数参与其他密码算法了。例如RSA算法中的公钥私钥的计算等。

在\openssl-master\crypto\rsa\rsa_gen.c文件中,详细描述了RSA算法中密钥的生成。其中的static int rsa_multiprime_keygen(RSA *rsa, int bits, int primes,BIGNUM *e_value, BN_GENCB *cb)函数中的下面的代码片生成了对于RSA算法最重要的两个大素数p和q。

for (i = 0; i < primes; i++) {
        adj = 0;
        retries = 0;

        if (i == 0) {
            prime = rsa->p;
        } else if (i == 1) {
            prime = rsa->q;
        } else {
            pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
            prime = pinfo->r;
        }

此外,还有利用中国剩余定理进行加速运算的步骤:

if (!BN_mod(rsa->dmp1, d, r1, ctx)
            || !BN_mod(rsa->dmq1, d, r2, ctx)) {
            BN_free(d);
            goto err;
        }

以上代码片段只是大素数在RSA中用到的部分有关大素数的函数。当然,RSA中有关大素数的代码实现还有很多,其他密码算法中大素数也扮演着至关重要的角色,大素数的运算效率问题也是非常值得研究的地方。

小结

大素数在密码学领域的重要性无需多言,故这次主要聚焦于大素数,介绍讲解了大素数有关的一些知识。

从需求出发进行分析,要想在密码的实际应用中安全地使用,就要保证密钥的随机性,保证随机性的一个重要组成部件就是随机数发生器,文章首先介绍了几种常用的随机数发生器;进一步,要产生大素数就要先产生“大整数”,这就对随机数发生器所产生的数据流的位数有了一定的要求——不能太短;产生了一个随机的大整数了之后,如何确定其为素数的问题,便进而引入了在国际上通用的标准Miller-Rabin素性检测的算法。

理论具备了之后,剩下的就是代码实现了。Openssl已经在源代码中为我们完全实现了一系列的函数算法,封装好之后,留出接口进行引用。

虽然口头上说一些算法步骤看起来比较简单,例如RSA,但是在实际的大算法实现过程中,一些提高运算速度的小算法,确实值得琢磨。大整数的加减乘运算在上篇文章已经有过说明,其实并不是想象的这么简单,或者利用中国剩余定理进行大整数的模运算,能较为显著的提高代码的运算效率。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值