今天的计划是DFS和BFS,两者比起来我还是更喜欢DFS的,毕竟不需要其他任何数据结构来维护,非常的简单,当初学数据结构我还怕,但实际上不需要显式调用栈的话,DFS真的很easy
有一幅以二维整数数组表示的图画,每一个整数表示该图画的像素值大小,数值在 0 到 65535 之间。
给你一个坐标 (sr, sc) 表示图像渲染开始的像素值(行 ,列)和一个新的颜色值 newColor,让你重新上色这幅图像。
为了完成上色工作,从初始坐标开始,记录初始坐标的上下左右四个方向上像素值与初始坐标相同的相连像素点,接着再记录这四个方向上符合条件的像素点与他们对应四个方向上像素值与初始坐标相同的相连像素点,……,重复该过程。将所有有记录的像素点的颜色值改为新的颜色值。
最后返回经过上色渲染后的图像
用visited记录访问过的位置,然后简单DFS,有个关键点就是要记录该点原数值,而不是用更改后的数值,还有一个很多题解中提到了判断newcolor==oldcolor这个条件,防止死循环爆栈,但实际上用visited数组也可以解决这个问题!
class Solution {
boolean[][]visited;
public int[][] floodFill(int[][] image, int sr, int sc, int newColor) {
visited=new boolean[image.length][image[0].length];
dfs(image, visited, sr, sc, newColor);
return image;
}
int[][] dfs(int[][] image,boolean[][]visited,int sr, int sc, int newColor){
int old=image[sr][sc];
image[sr][sc]=newColor;
visited[sr][sc]=true;
if(sr>0&&!visited[sr-1][sc]&&image[sr-1][sc]==old){
image=dfs(image,visited,sr-1, sc, newColor);
}
if(sr<image.length-1&&!visited[sr+1][sc]&&image[sr+1][sc]==old){
image=dfs(image,visited,sr+1, sc, newColor);
}
if(sc>0&&!visited[sr][sc-1]&&image[sr][sc-1]==old){
image=dfs(image,visited,sr, sc-1, newColor);
}
if(sc<image[0].length-1&&!visited[sr][sc+1]&&image[sr][sc+1]==old){
image=dfs(image,visited,sr,sc+1, newColor);
}
return image;
}
}
给你一个大小为 m x n 的二进制矩阵 grid 。
岛屿 是由一些相邻的 1 (代表土地) 构成的组合,这里的「相邻」要求两个 1 必须在 水平或者竖直的四个方向上 相邻。你可以假设 grid 的四个边缘都被 0(代表水)包围着。
岛屿的面积是岛上值为 1 的单元格的数目。
计算并返回 grid 中最大的岛屿面积。如果没有岛屿,则返回面积为 0 。
dfs,累加面积即可
class Solution {
public int maxAreaOfIsland(int[][] grid) {
int ans = 0;
for (int i = 0; i != grid.length; ++i) {
for (int j = 0; j != grid[0].length; ++j) {
ans = Math.max(ans, dfs(grid, i, j));
}
}
return ans;
}
public int dfs(int[][] grid, int cur_i, int cur_j) {
if (cur_i < 0 || cur_j < 0 || cur_i == grid.length || cur_j == grid[0].length || grid[cur_i][cur_j] != 1) {
return 0;
}
grid[cur_i][cur_j] = 0;
int[] di = {0, 0, 1, -1};
int[] dj = {1, -1, 0, 0};
int ans = 1;
for (int index = 0; index != 4; ++index) {
int next_i = cur_i + di[index], next_j = cur_j + dj[index];
ans += dfs(grid, next_i, next_j);
}
return ans;
}
}