你现在手里有一份大小为 N x N 的 网格 grid,上面的每个 单元格 都用 0 和 1 标记好了。其中 0 代表海洋,1 代表陆地,请你找出一个海洋单元格,这个海洋单元格到离它最近的陆地单元格的距离是最大的。
我们这里说的距离是「曼哈顿距离」( Manhattan Distance):(x0, y0) 和 (x1, y1) 这两个单元格之间的距离是 |x0 - x1| + |y0 - y1| 。
如果网格上只有陆地或者海洋,请返回 -1。
寻找最近距离,很自然的想到BFS,广度优先搜索的机制可以保证找到的是最近的那个
此题一个值得思考的点在于,入列的应该是陆地单元格还是海洋单元格?可以分析题目,我们要找的是海洋单元格,因此我们可以知道,陆地应该是基准,如果海洋为基准,海洋第一轮就入列了,找到的是离最近海洋距离最大的陆地单元格
tips:
不需要visited数组,可以原地修改grid,如果是海洋遍历后改为1即可,相当于大陆逐渐向海洋延申,寻找最后延伸全屏所需延伸次数
cnt从-1开始,因为第一轮的时候队列中存的是陆地,此时如果遍历完成,直接返回-1即可,下一轮队列中存的是距离陆地距离1的海洋快
class Solution {
public int maxDistance(int[][] grid) {
int n=grid.length;
int []dx={0,0,1,-1};
int []dy={1,-1,0,0};
Deque<int[]>queue=new LinkedList<>();
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(grid[i][j]==1){
queue.offer(new int[]{i,j});
}
}
}
if(queue.isEmpty()||queue.size()==n*n){
return -1;
}
int cnt=-1;
while(!queue.isEmpty()){
cnt++;
int num=queue.size();
for(int i=0;i<num;i++){
int[]idx=queue.poll();
int x=idx[0],y=idx[1];
for(int j=0;j<4;j++){
int newX=x+dx[j];
int newY=y+dy[j];
if(newX>=0&&newX<n&&newY>=0&&newY<n&&grid[newX][newY]==0){
queue.offer(new int[]{newX,newY});
grid[newX][newY]=1;
}
}
}
}
return cnt;
}