整除理论、约数、质数


这里只讲简单且必须会的东西。深奥的东西不谈。

和除法乘法有关系的题,大部分都和约数和倍数有关系,一开始就往这个方向想!!!

整除的基本知识(其实没啥用,太抽象)

注:a|b里面的a是小于等于b的,也就是说b是a的倍数
1.整除具有传递性
a|b, b|c -> a|c
2.

若a|b且a|c,那么对于任意的整数x,y,有a|(bx+cy)

根号n求约数

这也是一个板子,由于约数是成对出现的,因此我们可以枚举到根号n即可。


```cpp
#include <iostream>

using namespace std;

void divisors(int n)
{
	for(int i = 2; i <= n / i; i++)
	{
		if(n % i == 0)
		{
			cout << i << endl;//保存
			//如果像4的约数都是2和2,那么就只取一个就行了
			//也就是说判断这个成对的数是否相等,相等就保存一个即可。
			if(i != n / i) cout << n / i << endl;//保存
		}
	}
}

int main()
{
	int n;
	cin >> n;
	divisors(n);
}

找最短的循环节

给一个长度为n的字符串,找它的最小循环节长度。比如"ababababab",最短长度是2.

思路:循环字串的长度一定是总长的约数,因此先求出约数,然后去验证这些字串是否正确即可。

代码:

#include <iostream>
#include <string>

using namespace std;

const int N = 10010;
string s;
int divi[N];
int sz;
int ans = 0x7f7f7f7f;

void divisors(int n)
{
	for(int i = 1; i <=  n / i; i++)
	{
		if(n % i == 0)
		{
			divi[sz++] = i;
			if(i != n / i) divi[sz++] = n / i;
		}
	}
}

int minlength()
{
	//for(int i = 0; i < sz; i++) cout << divi[i] << endl;
	for(int i = 0; i < sz; i++)
	{
		string t = s.substr(0, divi[i]);
		//cout << t << endl;
		string tt;
		for(int j = 1; j <= s.size() / divi[i]; j++) tt += t;
		if(tt == s) ans = min(ans, divi[i]);
		//cout << tt << endl;
	}	
	return ans;
}

int main()
{
	cin >> s;
	divisors(s.size());
	int ans = minlength();
	cout << ans;
}

注:substr的第二个参数是字串的长度,不是第二个下标

拍头(*)

给定n和m个正整数,求每个数是另外的多少个数的倍数。n小于1e5,ai小于1e6.

这道题思路很值得学习。

首先暴力枚举每一个数,去找另外的能整除自己的数,找到之后++。
伪代码:
在这里插入图片描述
时间复杂度n²。明显过不了。


思路2:倍数就想到约数。可以先处理每一个数的约数,然后把对应约数在数组中出现的次数加上。如果和为s,那么这个数是另外s个数的倍数

有一个问题就是,我怎么知道对应约数出现了多少次?
直接遍历一遍数组的复杂度是n。那么整个算法的复杂度就变成了
根号n×n²(找约数是根号n,找约数次数是n,这个过程要循环n次)

这种优化还更烂了…

因此我们要预处理一下(这种预处理很常用,必须会)叫计数处理
开一个数组,在读入数据的同时记录这个数据出现的次数。

模板

for(int i = 0; i < n; i++)
	cin >> a[i], cnt[a[i]]++;

cnt是存放数据出现次数的,这样预处理一下就可以让找约数次数变成O(1)的了。整体复杂度就是根号n×n。

注意:这个cnt数组的大小取决于ai最大的值,而不是题目给的n,因为它是以ai作为key值的哈希。

这个思路可以过。
在这里插入图片描述

ac代码:

#include <iostream>

using namespace std;

const int N = 1e6 + 10;

int a[N], cnt[N];

int n;

int main()
{
	cin >> n;
	for(int i = 0; i < n; i++) cin >> a[i], cnt[a[i]]++;
	for(int i = 0; i < n; i++)
	{
		int res = 0;
		//求约数
		for(int j = 1; j <= a[i] / j; j++)
		{
			if(a[i] % j == 0)
			{
				res += cnt[j];
				if(j != a[i] / j) res += cnt[a[i] / j];
			}
		}
		//最后记得减去自己,为什么自己想一想就知道了
		cout << res - 1 << endl;
	}
}

思路三
约数和倍数可以捆绑着去想。既然约数可以做,倍数是否也可以。
枚举每一个数,每次加上自己,找到自己的倍数。如果找到了,证明这个倍数是我的倍数,我出现的次数就是它答案的一部分。(其实就是约数的逆过程)

注:找倍数的过程其实是相当于制表。最后是相当于查表输出。
因为找倍数必须要是顺序的且没有重复数字出现的

为什么要没有重复数字出现?举个例子:
2 4 8 10 2 8
第一次找2的倍数,4,8, 2, 8四个数字都被加了2出现的次数(两次),第5次又找2的倍数,4, 8, 2, 8四个数字都又被加了2出现的次数(两次),这就造成了重复计算了。

1. 其实枚举倍数相当于把一个数的因子都求出来了,然后把这个因子出现的次数加一起就是答案。
2. 而通过枚举倍数得到因子的前提就是没有重复元素(因子是不会相同的,有重复元素的时候枚举倍数相当于有重复因子)
3. 枚举因子的时候要从小到大枚举,可以通过j += i来枚举

4. 在这里插入图片描述

(看这个,例子看了没啥用)

因此要制表

伪代码:

for(int i = 1; i <= n; i++)
	for(int j = i; j <= n; j += i)//找i的倍数
		w[j] += cnt[a[i]];
		//j这个数是i的倍数,i出现的
		//次数就是j的答案的一部分.

ac代码:

#include <iostream>

using namespace std;

const int N = 1e6 + 10;

int a[N], cnt[N], w[N];

int n;

int main()
{
	cin >> n;
	for(int i = 0; i < n; i++) cin >> a[i], cnt[a[i]]++;
	for(int i = 1; i <= 1000000; i++)
		for(int j = i; j <= 1000000; j += i)
			w[j] += cnt[i];
	//查表
	for(int i = 0; i < n; i++) cout << w[a[i]] - 1 << endl;
}

在这里插入图片描述
时间复杂度是nlogn,因为第二个循环是j += i,是指数级别的。

质数与合数

合数是质数的对立面

线性筛

不需要特判2,2直接不会进循环,返回true

bool is_prime(int x)
{
	for(int i = 2; i <= x / i; i++)
		if(x % i == 0)
			return false;
	return true;
}

埃式筛

有一个推论:一个合数n可以被表示成两个质数相乘,且这两个质数一定有一个小于等于根号n。

埃式筛不是判定是否是质数的,而是筛选一定范围内的质数。
比如1-100内的质数,普通遍历加线性筛时间复杂度是根号n×n。
埃式筛的时间复杂度是nlnlnn,足以做简单数论题。

它的原理就是用到了上面的推论。根号n内的所有质数倍数全部删去,剩下的就是质数。比如100以内的质数就是把2,3,5,7的倍数全部删掉剩下来的数。

模板:

bool a[N];

void E_sieve(int n)
{
	a[0] = a[1] = 1;//这一步可要可不要
	for(int i = 2; i <= n / i; i++)
	//小于等于根号n的质数可以组成所有合数
	{
		if(a[i] == 0)//如果这个数没有被筛掉,也就是质数
			for(int j = i * 2; j <= n; j += i)//把a[i]的倍数都筛掉
				a[j] = 1;
	}
}

说一下几个问题:

  1. 为什么0表示质数1表示合数?其实都可以,只是0表示质数就不用初始化数组a了
    2.为什么第二个循环一开始就是i * 2?首先不能是i,因为i已经确定时质数了,其次2是最小的质数,乘以2可以找到离这个数最近的合数。

gcd和lcm

gcd

gcd就是辗转相除法

辗转相除法一句话解释就是较大数模较小数直到其中一个数为0.

观察下列过程

(16,10) -> (16 % 10, 10) -> (6, 10) -> (6, 10 % 6)
->(6, 4) -> (6 % 4, 4) -> (2, 4) -> (2, 4 % 2) -> (2, 0)
答案:2

因此用递归很好写

模板

int gcd(int x, int y)//默认x是较大数,y是较小数
{
	if(y == 0) return x;
	return gcd(y, x % y);//x%y之后变成较小数了,放在第二个参数
}

注:就算输入的时候让x较小了也无所谓,会自动换成x较大y较小的顺序。

时间复杂度最坏是log(max(x, y)),除了那么多次嘛。但一般时间都忽略不计,因为x和y的值太小了。

lcm

最小公倍数 = a * b / gcd(a, b)
模板

int lcm(int x, int y)
{
	return a / gcd(a, b) * b;//先除可以防止溢出
}

求多个数的最大gcd

一个一个求即可

(12, 18, 21) -> (6, 21) -> (3)

模板

int t = a[0];
for(int i = 1; i < n; i++)
	t = gcd(t, a[i])

最大公约数和最小公倍数问题

给定P,Q的最大公因数y和最小公倍数x。问有多少种P,Q的组合方式?

性质:PQ = XY

因此可以通过枚举P来得到Q,然后再验证P,Q的最大公因数是否为X即可。

又因为P是Y的约数,因此枚举Y的约数即可。

ac代码:

#include <iostream>

using namespace std;

int x, y, ans;

int gcd(int x, int y)
{
	if(y == 0) return x;
	return gcd(y, x % y);
}

int main()
{
	cin >> x >> y;
	for(int i = 1; i <= y / i; i++)
	{
		if(y % i == 0)
		{
			if(gcd(i, y / i * x) == x) ans++;
			if(i != y / i) 
				if(gcd(y / i, x * i) == x)
				 	ans++;
		}
	}
	cout << ans;
}

注:y / i * x不能写成其他形式,如果先乘的话就会爆int,因此1e11了,longlong倒是不会爆,所以多用long long吧。
也不能写成x / i * y,x有可能会小于i导致错误。

Hankson的趣味题

Hankson的趣味题在这里插入图片描述

思路:枚举约数,验证这个约数的合法性。

ac代码:

#include <iostream>

using namespace std;

int n;
int a0, a1, b0, b1;

int gcd(int x, int y)
{
	if(y == 0) return x;
	return gcd(y, x % y);	
}

int lcm(int x, int y)
{
	return x / gcd(x, y) * y;
}

int main()
{
	cin >> n;
	for(int i = 0; i < n; i++)
	{
		int ans = 0;
		cin >> a0 >> a1 >> b0 >> b1;
		for(int j = 1; j <= b1 / j; j++)
		{
			if(b1 % j == 0)
			{
				if(gcd(a0, j) == a1)
					if(lcm(b0, j) == b1)
						ans++;
				
				if(j != b1 / j)
				{
					if(gcd(a0, b1 / j) == a1)
						if(lcm(b0, b1 / j) == b1)
							ans++;
				}
			}
		}
		cout << ans << endl;
	}
}

分析草稿
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值