数论 整除理论(1)

Problem  Problem  设奇数 n>1 n > 1 ,证明: n n 是素数的充分必要条件是n不能表为三个或三个以上的连续正整数之和。
解:
必要性:
设自然数前缀和 S(a)=a(a+1)2,S(b)=b(b+1)2 S ( a ) = a ( a + 1 ) 2 , S ( b ) = b ( b + 1 ) 2 .
nS(a)S(b)=(a+b+1)(ab)2,ab>1,b0 n ≠ S ( a ) − S ( b ) = ( a + b + 1 ) ( a − b ) 2 , a − b > 1 , b ⩾ 0
于是设 k=ab,nk(2b+1+k)2 k = a − b , n ≠ k ( 2 b + 1 + k ) 2
若奇数 n n 是合数,则n=uv,uv3,v是奇数.
k=v3 k = v ⩾ 3 则能否有 b b 使得2b+1+k=2u?答案是有的
b=uv+12>uv0 b = u − v + 1 2 > u − v ⩾ 0 ,并且它右式总是整数。
充分性:
显然 S(a)S(b) S ( a ) − S ( b ) 是合数,所以充分性得证。

Problem  Problem  n3 n ⩾ 3 .证明存在 n!1 n ! − 1 的素因子 >n > n
证明:
设素数 pn,p|n!1 p ⩽ n , p | n ! − 1 ,又 p|n! p | n ! ,于是 n!1=rp,n!=sp,(sr)p=1 n ! − 1 = r p , n ! = s p , ( s − r ) p = 1 ,所以 p|1 p | 1 ,但这是不可能的。

Problem  Problem  设整系数多项式 P(x)=k=0nakxk,degP>1 P ( x ) = ∑ k = 0 n a k x k , deg ⁡ P > 1 ,求有无数多个整数值 x x 使得P是合数。
解:
P0(x)=ax+1 P 0 ( x ) = a x + 1 时,显然成立.
使pi{k|ak0} 使 得 p i ∈ { k | a k ≠ 0 } .
x=ap0x,P1(x)=(ap1x+1)ap0,P0(x)|P1(x) 令 x = a p 0 x ′ , P 1 ( x ) = ( a p 1 x ′ + 1 ) a p 0 , 则 P 0 ( x ) | P 1 ( x )
x=ap0x,P2(x)=ap0P1(x) 令 x = a p 0 x ′ , P 2 ( x ) = a p 0 P 1 ( x ) ,则 P0(x)|P1(x)|P2(x) P 0 ( x ) | P 1 ( x ) | P 2 ( x ) .
于是对于 degP=kN+ deg ⁡ P = k ∈ N + ,命题成立。

Problem  Problem  假若素数只有有限个 p1,p2,...ps p 1 , p 2 , . . . p s ,证明:
N>0,n=1N1n<k=1s(11pk)1 ∀ N > 0 , ∑ n = 1 N 1 n < ∏ k = 1 s ( 1 − 1 p k ) − 1 ,由此推出素数有无数多个。
证明:
首先任意正整数必然能够由 p1,p2,...ps p 1 , p 2 , . . . p s 表出,于是
n=1N1n<k=1sn=01pnk=limnk=1s1pnk1p1k=k=1s(11pk)1 ∑ n = 1 N 1 n < ∏ k = 1 s ∑ n = 0 ∞ 1 p k n = lim n → ∞ ∏ k = 1 s 1 − p k − n 1 − p k − 1 = ∏ k = 1 s ( 1 − 1 p k ) − 1
但是 n=11n ∑ n = 1 ∞ 1 n 不收敛,与其部分和有上界矛盾,所以素数一定有无限多个。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值