之前介绍的是二叉树的深度优先遍历,接着是二叉树的另外一种遍历方式——层序遍历。
层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。借用一个辅助数据结构即队列来实现,队列先进先出,符合一层一层遍历的逻辑,而是用栈先进后出适合模拟深度优先遍历也就是递归的逻辑。
方法一:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<vector<int>> res;
queue<TreeNode*> que;
if(root==NULL) return res;
que.push(root);
while(!que.empty()){
int size=que.size();//变化的size,因为每次的que都在变化
vector<int> path;//每完成一层for循环,重新定义一个新path,不用清除之前的数据,满足了[[3],[9,20]]这种要求
//一次for循环,填充每一个path
for(int i=0;i<size;i++){
TreeNode* node=que.front();
que.pop();
path.push_back(node->val);
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
}
//for循环之后,将填好的path放进res中
res.push_back(path);
}
return res;
}
};
方法二:相较于方法一,不同之处在于:for循环将每层填好的path放进res中之后,用path.clear()清除每层的path,就不用每一层申请一个新path。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrder(TreeNode* root) {
vector<int> path;
vector<vector<int>> res;
queue<TreeNode*> que;
if(root==NULL) return res;
que.push(root);
while(!que.empty()){
int size=que.size();//变化的size,因为每次的que都在变化
//一次for循环,填充每一个path
for(int i=0;i<size;i++){
TreeNode* node=que.front();
que.pop();
path.push_back(node->val);
if(node->left) que.push(node->left);
if(node->right) que.push(node->right);
}
res.push_back(path);//for循环之后,将每层填好的path放进res中
path.clear();//清除每层的path
}
return res;
}
};
该题与上题的不同之处在于:自底向上的层序遍历
其实只需要在上题的基础上,做一个reverse的操作即可。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<vector<int>> levelOrderBottom(TreeNode* root) {
vector<int> path;
vector<vector<int>> res;
queue<TreeNode*> q;
if(root==NULL) return res;
q.push(root);
while(!q.empty()){
int size=q.size();
for(int i=0;i<size;i++){
TreeNode* node=q.front();
q.pop();
path.push_back(node->val);
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
res.push_back(path);
path.clear();
}
reverse(res.begin(),res.end());
return res;
}
};
该题也是层序遍历的变形。其实就是将每层的最后一个元素放进res中返回即可
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> rightSideView(TreeNode* root) {
vector<int> path;
vector<int> res;
queue<TreeNode*> q;
if(root==NULL) return res;
q.push(root);
while(!q.empty()){
int size=q.size();
for(int i=0;i<size;i++){
TreeNode* node=q.front();
q.pop();
path.push_back(node->val);
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
res.push_back(path[path.size()-1]);
}
return res;
}
};
在每一层for循环的时候将sum统计出来,然后在for循环结束之后就求平均值,将平均值放进res中。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<double> averageOfLevels(TreeNode* root) {
vector<double> res;
queue<TreeNode*>q;
q.push(root);
while(!q.empty()){
int size=q.size();
double sum=0;
for(int i=0;i<size;i++){
TreeNode* node=q.front();
q.pop();
sum+=node->val;
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
res.push_back(sum/size);
}
return res;
}
};
和二叉树的层序遍历区别在于:二叉树只有两个孩子节点,判断左右孩子不为空即可让他们入队。而N叉树有n个孩子节点,就需要借助for循环将每一个孩子判空然后入队。
for(int j=0;j<node->children.size();j++){//将node节点的孩子节点依次放进队列中
if(node->children[j]) q.push(node->children[j]);
}
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> children;
Node() {}
Node(int _val) {
val = _val;
}
Node(int _val, vector<Node*> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public:
vector<vector<int>> levelOrder(Node* root) {
vector<vector<int>> res;
vector<int> path;
queue<Node*> q;
if(root==NULL) return res;
q.push(root);
while(!q.empty()){
int size=q.size();
for(int i=0;i<size;i++){
Node* node=q.front();
q.pop();
path.push_back(node->val);
for(int j=0;j<node->children.size();j++){//将node节点的孩子节点依次放进队列中
if(node->children[j]) q.push(node->children[j]);
}
}
res.push_back(path);
path.clear();
}
return res;
}
};
层序遍历大框架,每层for循环的时候,比较求出最大值,每层for循环结束后,将最大值放进res。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
vector<int> largestValues(TreeNode* root) {
vector<int> res;
queue<TreeNode*> q;
if(root==NULL) return res;
q.push(root);
while(!q.empty()){
int size=q.size();
int max=INT_MIN;
for(int i=0;i<size;i++){
TreeNode* node=q.front();
q.pop();
if(node->val>max) max=node->val;
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
res.push_back(max);
}
return res;
}
};
每层for循环,重新定义size,nodepre,node
在单层遍历时(包括i=0,i>0时)记录本层的头部节点,然后在遍历的时候(i>0时)让前一个节点指向本节点就可以了
然后每层for循环结束,本层最后一个节点指向NULL
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> q;
if(root!=NULL) q.push(root);
while(!q.empty()){
//每层for循环,重新定义size,nodepre,node
int size=q.size();
Node* nodepre;
Node* node;
for(int i=0;i<size;i++){
if(i==0){
nodepre=q.front();//取出每层的第一个节点
q.pop();
node=nodepre;
}
else{
node=q.front();
q.pop();
nodepre->next=node;//本层前一个节点指向本节点
nodepre=nodepre->next;
}
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
nodepre->next=NULL;//每层for循环结束,本层最后一个节点指向NULL
}
return root;
}
};
这道题是二叉树,上一道题是完美二叉树,其实没有任何差别,一样的代码一样的逻辑一样的味道
每层for循环,重新定义size,nodepre,node
在单层遍历时(包括i=0,i>0时)记录本层的头部节点,然后在遍历的时候(i>0时)让前一个节点指向本节点就可以了
然后每层for循环结束,本层最后一个节点指向NULL
/*
// Definition for a Node.
class Node {
public:
int val;
Node* left;
Node* right;
Node* next;
Node() : val(0), left(NULL), right(NULL), next(NULL) {}
Node(int _val) : val(_val), left(NULL), right(NULL), next(NULL) {}
Node(int _val, Node* _left, Node* _right, Node* _next)
: val(_val), left(_left), right(_right), next(_next) {}
};
*/
class Solution {
public:
Node* connect(Node* root) {
queue<Node*> q;
if(root!=NULL) q.push(root);
while(!q.empty()){
int size=q.size();
Node* nodePre;
Node* node;
for(int i=0;i<size;i++){
if(i==0){
nodePre=q.front();
q.pop();
node=nodePre;
}
else{
node=q.front();
q.pop();
nodePre->next=node;
nodePre=nodePre->next;
}
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
nodePre->next=NULL;
}
return root;
}
};
最大深度即是二叉树的层数,层序遍历获得层数即可。
利用层序遍历的大框架,每层for循环结束之后sum++
最终while结束后,返回sum
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int maxDepth(TreeNode* root) {
int sum=0;
queue<TreeNode*> q;
if(root!=NULL) q.push(root);
while(!q.empty()){
int size=q.size();
for(int i=0;i<size;i++){
TreeNode* node=q.front();
q.pop();
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
sum++;
}
return sum;
}
};
层序遍历大框架,当node的左右孩子均为空的时候,说明到了最低点的一层,直接返回深度
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
queue<TreeNode*> q;
int mindepth=0;
if(root!=NULL) q.push(root);
while(!q.empty()){
int size=q.size();
mindepth++;
for(int i=0;i<size;i++){
TreeNode* node=q.front();
q.pop();
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
if(node->left==NULL && node->right==NULL) return mindepth;//当左右节点都为空,说明到了最低点的一层,直接返回
}
}
return mindepth;
}
};
层序遍历(队列)
//记录每一行的第一个元素即可,不断更新这个res就可以记录到最后一行的第一个元素
(定义了两个vector,将每一行的元素都放进去,最后返回vector的vector。这个办法就有点笨拙:return resback[resback.size()-1][0];)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int findBottomLeftValue(TreeNode* root) {
queue<TreeNode*> q;
int res=0;
if(root!=NULL) q.push(root);
while(!q.empty()){
int size=q.size();
for(int i=0;i<size;i++){
TreeNode* node=q.front();
q.pop();
if(i==0) res=node->val;//记录每一行的第一个元素即可,不断更新res就可以记录到最后一行的第一个元素
if(node->left) q.push(node->left);
if(node->right) q.push(node->right);
}
}
return res;
}
};