难度等级:中等
上一篇算法:
力扣此题地址:
1.题目:二维数组中的查找
在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。给定 target = 20,返回 false。
2.解题思路:
很明显,由于该二维数组上到下递增,左到右递增的特殊性,遍历整个矩阵进行查找不是该题目的意图所在。总结规律我们可以发现:应该从矩阵的右上角或者左下角开始查找。
(1)以右上角为例,首先选取右上角的数字,如果该数字等于要查找的数字,则查找过程结束;
(2)如果该数字大于要查找的数字,则说明该列其他元素都大于要查找的数字,便可以删掉该列;
(3)如果该数字小于要查找的数字,则说明该行其他元素也都小于要查找的数字,便可以删掉该行。
这样,每一次比较都可以剔除一行或者一列,进而缩小查找范围,时间复杂度为O(n)。
3.代码实现:
class Solution {
//以右上角为例
public boolean findNumberIn2DArray(int[][] matrix, int target) {
//先判断数组是否为空,如果数组是空的就直接终止
if(matrix == null){
return false;
}
int n = matrix.length;//行数
int m = matrix[0].length;//列数
for(int j = m-1;j<m;j--){
for(int i = 0;i<n;i++){
if(matrix[i][j] == target){
return true;
}
if(matrix[i][j] > target){
break;
}else{
continue;
}
}
}
return false;
}
}
4.结果显示:
5.心得体会:
思路:
做这道题的时候,我一想到的是遍历一遍数组,逐一地查找;后面看了题解思路之后,发现我对这道题思维的局限性在于,我没有利用已有的“从左到右,从上到下递增”条件;这道题很有规律,按照他给的条件然后用排除法就可以很快的解出来。
实现:
在实现的时候,按照思路去写代码,写完之后信誓旦旦地运行,结果返回false。仔细看了一下,才发现二维数组的行和列我搞反了,因为平时二维数组用的少,所以不熟练,要多加练习。