剑指 Offer04. 二维数组中的查找【27】

难度等级:中等

上一篇算法:

剑指 Offer 03. 数组中重复的数字【数组类】

力扣此题地址:

剑指 Offer 04. 二维数组中的查找 - 力扣(LeetCode)

1.题目:二维数组中的查找

在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例:

现有矩阵 matrix 如下:

[
  [1,   4,  7, 11, 15],
  [2,   5,  8, 12, 19],
  [3,   6,  9, 16, 22],
  [10, 13, 14, 17, 24],
  [18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。

给定 target = 20,返回 false。

2.解题思路:

很明显,由于该二维数组上到下递增,左到右递增的特殊性,遍历整个矩阵进行查找不是该题目的意图所在。总结规律我们可以发现:应该从矩阵的右上角或者左下角开始查找。

  (1)以右上角为例,首先选取右上角的数字,如果该数字等于要查找的数字,则查找过程结束;

        (2)如果该数字大于要查找的数字,则说明该列其他元素都大于要查找的数字,便可以删掉该列;

        (3)如果该数字小于要查找的数字,则说明该行其他元素也都小于要查找的数字,便可以删掉该行。

  这样,每一次比较都可以剔除一行或者一列,进而缩小查找范围,时间复杂度为O(n)。

 3.代码实现:

class Solution {
    //以右上角为例
    public boolean findNumberIn2DArray(int[][] matrix, int target) {
        //先判断数组是否为空,如果数组是空的就直接终止
        if(matrix == null){
            return false;
        }
        int n = matrix.length;//行数
        int m = matrix[0].length;//列数
        for(int j = m-1;j<m;j--){
            for(int i = 0;i<n;i++){
                if(matrix[i][j] == target){
                    return true;
                }
                if(matrix[i][j] > target){
                    break;
                }else{
                    continue;
                }
            }
        }
        return false;
    }
}


4.结果显示:

5.心得体会:

思路:

做这道题的时候,我一想到的是遍历一遍数组,逐一地查找;后面看了题解思路之后,发现我对这道题思维的局限性在于,我没有利用已有的“从左到右,从上到下递增”条件;这道题很有规律,按照他给的条件然后用排除法就可以很快的解出来。

实现:

在实现的时候,按照思路去写代码,写完之后信誓旦旦地运行,结果返回false。仔细看了一下,才发现二维数组的行和列我搞反了,因为平时二维数组用的少,所以不熟练,要多加练习。

6.知识点补充:(二维数组的行和列)

二维数组的行和列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值