python替换把写错的中文符号都替换成英文方法

python替换把写错的中文符号都替换成英文方法

利用函数:

    def str_replace(self,data):
        """ 把写错的中文符号都替换成英文 """
        chinaTab=[':',';',',','。','!','?','【','】','“','(',')','%','#','@','&',"‘",' ','\n','”']
        englishTab=[':',';',',','.','!','?','[',']','"','(',')','%','#','@','&',"'",' ','','"']
        for index in range(len(chinaTab)):
            if chinaTab[index] in data:
                data=data.replace(chinaTab[index],englishTab[index])
        return data

直接调用这个方法就好了

很抱歉,作为AI语言模型,我只能为您提供代码框架,对于文本的标准化和归类需要结合具体业务场景和数据特点进行详细设计。 以下是一个基本的文本标准化和分类的代码示例: ```python # 导入库 import re # 原始数据,假设包含了一些乱码、错别字、多余字符等问题 data = [ "这 是 一条 包 含 乱 码 和 多 余 字 符 的 数 据", "这个数据有一些错别字,例如“中西饭”,应该是“中西餐”", "这句话后面有标点符号,需要去除句号。", "数据类 型 包 含 汉 字 和 英 文 字 母", ] # 定义用于文本标准化的函数,比如去除多余字符、替换错别字、去除标点符号等 def text_normalization(text): # 去除空格、多余空格、全角字符等 text = re.sub('\s+', '', text) text = re.sub('\s', '', text) text = re.sub('[\uFF00-\uFFFF]', '', text) # 替换错别字 replacements = { "中西饭": "中西餐", # 其他需要替换的词汇 } for key in replacements.keys(): text = text.replace(key, replacements[key]) # 去除标点符号 text = re.sub(r'[^\w\s]', '', text) return text # 定义用于分类的函数,可以根据业务需要自行修改标签和分类方式 def text_classification(text): if "数据类型" in text: return "数据类型" elif "正确" in text: return "正确性" elif "规范" in text: return "规范性" else: return "其它" # 对原始数据进行文本标准化和分类 normalized_data = [text_normalization(d) for d in data] categories = [text_classification(d) for d in normalized_data] # 输出结果 print("原始数据:", data) print("标准化后的数据:", normalized_data) print("分类结果:", categories) ``` 在这段代码中,我们定义了一个包括文本标准化和分类两个函数的框架,并使用正则表达式、替换字典等方式对文本进行了基本处理。但是需要注意,在实际应用中,这些处理方式还需要根据具体场景进行进一步优化和完善。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值