动态规划:背包问题

动态规划就是将一个复杂的问题分解成多个子问题,通过解决子问题的借递归求出问题的借,动态规划一般是出现重叠子问题(子问题重复出现)和最优子结构才能用动态规划解决。

动态规划的方法:记忆性搜索,将每个求解过的子问题的解记录下来,下次遇到同样的子问题,就可以直接使用之前记录的结果,而不是重复计算,通过子问题的递归可以求出问题的解。

1.0-1背包问题:小偷带有能装一定质量的背包,所偷每个物品都有质量和价值,求在装的下的情况下,所偷最大收益;

代码:

#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=10100;
int v[maxn],w[maxn];
int f[maxn][maxn];
int main( ){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>w[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			f[i][j]=f[i-1][j];
			if(j>=v[i]){
				f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
			} 
		}
	}
	cout<<f[n][m];
	return 0;
}

2.dp-硬币问题:

        一定总额的硬币,和数个硬币的总类,问至少要多少个硬币可以凑够这个总额?

代码:

dp-硬币问题
#include<cstdio>//至少要多少个硬币; 
#include<iostream>
using namespace std;
#define INF 0x3f
int f[1000];
int main()
{
	int n;
	int cost; 
	cin>>n;//硬币价值; 
	for(int i=1;i<=n;i++)//运用了分治的思想; 
	{
		cost=INF;
		if(i-1>=0) cost=min(cost,f[i-1]+1);//1,5,11都是含有的硬币数,i-1>=0的意思是硬币能取; 
		if(i-5>=0) cost=min(cost,f[i-5]+1);
		if(i-11>=0) cost=min(cost,f[i-11]+1);
		f[i]=cost;//取3种情况硬币数的最小值;
	}
	cout<<f[n];
	return 0;
}

动态规划:数塔问题

将一些数字排成数塔的形状,其中第一层有一个数字,第二层有两个数组...第n层有n个数字,现在要从第一层走到第n层,每次只能走向下一层连接的两个数字中的一个,问:最后将路径上所有数字相加后得到的和最大是多少?

代码:
 

#include<iostream>
#include<cmath>
using namespace std;
const int maxn=10010;
int dp[maxn][maxn];
int f[maxn][maxn];
int main( ){
	int n;
	cin>>n;//数塔的层数; 
	for(int i=1;i<=n;i++){
		for(int j=1;j<=i;j++){
			cin>>f[i][j];//输出数塔; 
		}
	}
	for(int j=1;j<=n;j++){
		dp[n][j]=f[n][j];//边界,从边界出发,通过了状态转移方程扩散到整个dp数组; 
	}
	//从n-1层不断往上计算除dp[i][j]; 
	for(int i=n-1;i>=1;i--){
		for(int j=1;j<=i;j++){//第j层有i个元素; 
			dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+f[i][j];//状态转移方程; 
		}
	}
	cout<<dp[1][1];
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值