动态规划就是将一个复杂的问题分解成多个子问题,通过解决子问题的借递归求出问题的借,动态规划一般是出现重叠子问题(子问题重复出现)和最优子结构才能用动态规划解决。
动态规划的方法:记忆性搜索,将每个求解过的子问题的解记录下来,下次遇到同样的子问题,就可以直接使用之前记录的结果,而不是重复计算,通过子问题的递归可以求出问题的解。
1.0-1背包问题:小偷带有能装一定质量的背包,所偷每个物品都有质量和价值,求在装的下的情况下,所偷最大收益;
代码:
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=10100;
int v[maxn],w[maxn];
int f[maxn][maxn];
int main( ){
int n,m;
cin>>n>>m;
for(int i=1;i<=n;i++){
cin>>v[i]>>w[i];
}
for(int i=1;i<=n;i++){
for(int j=0;j<=m;j++){
f[i][j]=f[i-1][j];
if(j>=v[i]){
f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
}
}
}
cout<<f[n][m];
return 0;
}
2.dp-硬币问题:
一定总额的硬币,和数个硬币的总类,问至少要多少个硬币可以凑够这个总额?
代码:
dp-硬币问题
#include<cstdio>//至少要多少个硬币;
#include<iostream>
using namespace std;
#define INF 0x3f
int f[1000];
int main()
{
int n;
int cost;
cin>>n;//硬币价值;
for(int i=1;i<=n;i++)//运用了分治的思想;
{
cost=INF;
if(i-1>=0) cost=min(cost,f[i-1]+1);//1,5,11都是含有的硬币数,i-1>=0的意思是硬币能取;
if(i-5>=0) cost=min(cost,f[i-5]+1);
if(i-11>=0) cost=min(cost,f[i-11]+1);
f[i]=cost;//取3种情况硬币数的最小值;
}
cout<<f[n];
return 0;
}
动态规划:数塔问题
将一些数字排成数塔的形状,其中第一层有一个数字,第二层有两个数组...第n层有n个数字,现在要从第一层走到第n层,每次只能走向下一层连接的两个数字中的一个,问:最后将路径上所有数字相加后得到的和最大是多少?
代码:
#include<iostream>
#include<cmath>
using namespace std;
const int maxn=10010;
int dp[maxn][maxn];
int f[maxn][maxn];
int main( ){
int n;
cin>>n;//数塔的层数;
for(int i=1;i<=n;i++){
for(int j=1;j<=i;j++){
cin>>f[i][j];//输出数塔;
}
}
for(int j=1;j<=n;j++){
dp[n][j]=f[n][j];//边界,从边界出发,通过了状态转移方程扩散到整个dp数组;
}
//从n-1层不断往上计算除dp[i][j];
for(int i=n-1;i>=1;i--){
for(int j=1;j<=i;j++){//第j层有i个元素;
dp[i][j]=max(dp[i+1][j],dp[i+1][j+1])+f[i][j];//状态转移方程;
}
}
cout<<dp[1][1];
return 0;
}