图形覆盖问题
问题描述
在一个2k×2k 个方格组成的棋盘中,恰有一个方格与其它方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
输入:三个整数,分别表示k,以及不可覆盖点的坐标
输出:输出最终棋盘的样子,不可覆盖点为0,其他位置输出是第几块L块所覆盖的。
解题思路
首先我们选择利用分治法去解这个题。分支的规则是按照每个区域最中间的点来进行划分,划分为4个区域。
这四个区域里必定有且只有一个区域有不能覆盖的位置。其他三个区域便可以放置一个L形的图形在划分点周围,以保证再下一次划分时,每个区域都有一个不可覆盖的位置。
代码实现
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#define in(x) scanf("%d",&x)
using namespace std;
const int N = 129;
int fastpow(int a,int n);
void dvd(int beginx,int beginy,int endx,int endy,int tx,int ty);
int B[N][N];
int n;
void debug(){
for(int i=1