一:模拟
想要利用计算机解决现实生活中的一些复杂的问题时,建立模型是解决问题的关键。
举个生活中常见的例子:我们拿到了某次数学考试的成绩单,现在需要知道谁考得最好。当然不能把成绩单对着电脑晃一晃,然后问“谁考得最好?”。需要通过一种途径让计算机来理解这个问题。这个问题可以建模成:“给定数组 score[],问数组内元素的最大值”。这样建模后,就能很方便的写程序解决问题了。
以下是例题:
1.洛谷P1042乒乓球
题目描述:
国际乒联现在主席沙拉拉自从上任以来就立志于推行一系列改革,以推动乒乓球运动在全球的普及。其中11分制改革引起了很大的争议,有一部分球员因为无法适应新规则只能选择退役。华华就是其中一位,他退役之后走上了乒乓球研究工作,意图弄明白11分制和21分制对选手的不同影响。在开展他的研究之前,他首先需要对他多年比赛的统计数据进行一些分析,所以需要你的帮忙。
华华通过以下方式进行分析,首先将比赛每个球的胜负列成一张表,然后分别计算在11分制和21分制下,双方的比赛结果(截至记录末尾)。
比如现在有这么一份记录,(其中W表示华华获得一分,L表示华华对手获得一分):
WWWWWWWWWWWWWWWWWWWWWWLW
在11分制下,此时比赛的结果是华华第一局11比0获胜,第二局11比0获胜,正在进行第三局,当前比分11比11。而在21分制下,此时比赛结果是华华第一局21比0获胜,正在进行第二局,比分2比1。如果一局比赛刚开始,则此时比分为0比0。直到分差大于或者等于2,才一局结束。
你的程序就是要对于一系列比赛信息的输入(WLWLWL形式),输出正确的结果。
输入格式:
每个输入文件包含若干行字符串,字符串有大写的WWW、LLL和EEE组成。其中EEE表示比赛信息结束,程序应该忽略E之后的所有内容。每行至多25个字母,最多有2500行
输出格式:
输出由两部分组成,每部分有若干行,每一行对应一局比赛的比分(按比赛信息输入顺序)。其中第一部分是11分制下的结果,第二部分是21分制下的结果,两部分之间由一个空行分隔。
输入1:
WWWWWWWWWWWWWWWWWWWW
WWLWE
输出1:
11:0
11:0
1:1
21:0
2:1
解析
题目的思路十分简单,比如11分制,当比赛到了11局之后,并且他们的比分差大于等于2,则比赛结束,否则就继续,下面附上代码。
AC代码
#include<bits/stdc++.h>
using namespace std;
char c;
int w,l,i,inf[70000];
int main()
{
//利用inf数组记录模拟输赢
for(i=1;cin>>c&&c!='E';i++)
{
if(c=='W')inf[i]=1;
else inf[i]=-1;
}
//11分制的情况
for(i=1;;i++)
{
if(inf[i]==1)w++;
if(inf[i]==-1)l++;
if(inf[i]==0)
{
printf("%d:%d\n",w,l);
w=0,l=0;
break;
}
if(abs(w-l)>=2)
if(w>=11||l>=11){
printf("%d:%d\n",w,l);
w=0,l=0;
}
}
printf("\n");
//21分制也同理
for(i=1;;i++)
{
if(inf[i]==1)w++;
if(inf[i]==-1)l++;
if(inf[i]==0)
{
printf("%d:%d\n",w,l);
w=0,l=0;
break;
}
if(abs(w-l)>=2)
if(w>=21||l>=21){
printf("%d:%d\n",w,l);
w=0,l=0;
}
}
return 0;
}
题目描述:
扫雷游戏是一款十分经典的单机小游戏。在n行m列的雷区中有一些格子含有地雷(称之为地雷格),其他格子不含地雷(称之为非地雷格)。玩家翻开一个非地雷格时,该格将会出现一个数字——提示周围格子中有多少个是地雷格。游戏的目标是在不翻出任何地雷格的条件下,找出所有的非地雷格。
现在给出n行m列的雷区中的地雷分布,要求计算出每个非地雷格周围的地雷格数。
注:一个格子的周围格子包括其上、下、左、右、左上、右上、左下、右下八个方向上与之直接相邻的格子。
输入格式:
第一行是用一个空格隔开的两个整数n和m,分别表示雷区的行数和列数。
接下来n行,每行m个字符,描述了雷区中的地雷分布情况。字符’*’表示相应格子是地雷格,字符’?’表示相应格子是非地雷格。相邻字符之间无分隔符。
输出格式:
输出文件包含n行,每行m个字符,描述整个雷区。用’*’表示地雷格,用周围的地雷个数表示非地雷格。相邻字符之间无分隔符。
解析:
这题较简单,累加周围一圈有地雷的数量就行。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int mp[105][105];
int main()
{
int n,m;
char tmp;
scanf("%d%d",&n,&m);
//有地雷的地方用1标记,其余默认为0.
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
cin>>tmp;
if(tmp=='*')mp[i][j]=1;
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)
{
if(mp[i][j]==1) printf("*");
else
printf("%d",mp[i+1][j+1]+mp[i+1][j-1]+mp[i+1][j]+mp[i][j+1]+mp[i][j-1]+mp[i-1][j+1]+mp[i-1][j]+mp[i-1][j-1]);
}
printf("\n");
}
return 0;
}
3.洛谷P1563玩具谜题
小南有一套可爱的玩具小人, 它们各有不同的职业。
有一天, 这些玩具小人把小南的眼镜藏了起来。 小南发现玩具小人们围成了一个圈,它们有的面朝圈内,有的面朝圈外。如链接处图:
这时singer告诉小南一个谜題: “眼镜藏在我左数第3个玩具小人的右数第1个玩具小人的左数第2个玩具小人那里。 ”
小南发现, 这个谜题中玩具小人的朝向非常关键, 因为朝内和朝外的玩具小人的左右方向是相反的: 面朝圈内的玩具小人, 它的左边是顺时针方向, 右边是逆时针方向; 而面向圈外的玩具小人, 它的左边是逆时针方向, 右边是顺时针方向。
小南一边艰难地辨认着玩具小人, 一边数着:singer朝内, 左数第3个是archer。archer朝外,右数第1个是thinker。thinker朝外, 左数第2个是writer。所以眼镜藏在writer这里!虽然成功找回了眼镜, 但小南并没有放心。 如果下次有更多的玩具小人藏他的眼镜, 或是谜題的长度更长, 他可能就无法找到眼镜了 。 所以小南希望你写程序帮他解决类似的谜題。 这样的谜題具体可以描述为:
有 n个玩具小人围成一圈, 已知它们的职业和朝向。现在第1个玩具小人告诉小南一个包含m条指令的谜題, 其中第 z条指令形如“左数/右数第s,个玩具小人”。 你需要输出依次数完这些指令后,到达的玩具小人的职业。
输入格式:
输入的第一行包含两个正整数 n,m,表示玩具小人的个数和指令的条数。
接下来 n 行,每行包含一个整数和一个字符串,以逆时针为顺序给出每个玩具小人的朝向和职业。其中 0 表示朝向圈内,1 表示朝向圈外。 保证不会出现其他的数。字符串长度不超过 10 且仅由小写字母构成,字符串不为空,并且字符串两两不同。整数和字符串之间用一个空格隔开。
接下来 m 行,其中第 i 行包含两个整数 ai,si,表示第 i 条指令。若 ai=0,表示向左数 si 个人;若 ai=1,表示向右数 si 个人。 保证 ai 不会出现其他的数,1≤si<n。
输出格式:
输出一个字符串,表示从第一个读入的小人开始,依次数完 m 条指令后到达的小人的职业。
输入:
7 3
0 singer
0 reader
0 mengbier
1 thinker
1 archer
0 writer
1 mogician
0 3
1 1
0 2
输出:
writer
解析
本题考验思维,将向左或向右,顺时针或逆时针标记好就行。
AC代码:
#include<bits/stdc++.h>
using namespace std;
struct node{
int head;
string name;
}man[100005];
int main()
{
int n,m,ans;
scanf("%d%d",&n,&m);
for(int i=0;i<n;i++)cin>>man[i].head>>man[i].name;
ans=0;
for(int i=0;i<m;i++)
{
int a,b;
cin>>a>>b;
if(a==1&&man[ans].head==1||a==0&&man[ans].head==0)ans=(ans+n-b)%n;
else if(a==1&&man[ans].head==0||a==0&&man[ans].head==1)ans=(ans+b)%n;
}
cout<<man[ans].name<<endl;
return 0;
}
二.高精度
当我们需要处理很大的数的相加或相乘时,int类型甚至long long int 类型都不够存储数据时就需要用到高精度算法了,这里举例两种:
1.大数相加:洛谷P1601
题目描述:
高精度加法,相当于a+b problem,不用考虑负数.两行输入,a,b位数小于等于500;输出只有一行,代表a+ba+ba+b的值
解析
高精度的一般思路都是把数放在数组里,把该进位的做进位处理就行,这里介绍直接用字符串处理的,更简单的高精相加,会在下方阶乘相加附上代码。
AC代码:
#include<bits/stdc++.h>
using namespace std;
string add(string str1,string str2)
{
string str;
int len1=str1.length();
int len2=str2.length();
if(len1<len2)
for(int i=0;i<len2-len1;i++)
str1="0"+str1;
else
for(int i=0;i<len1-len2;i++)
str2="0"+str2;
len1=str1.length();
int sum=0,temp=0;
for(int i=len1-1;i>=0;i--)
{
sum=str1[i]-'0'+str2[i]-'0'+temp;
temp=sum/10;
str=char(sum%10+'0')+str;
}
if(temp!=0)str=char(temp+'0')+str;
return str;
}
int main()
{
string str1,str2;
cin>>str1>>str2;
cout<<add(str1,str2)<<endl;
return 0;
}
2.大数相乘:洛谷P1303
题目描述:
求两数的积。每个数字不超过 2000位,需用高精。
解析
乘和加就有些不一样了,他的数字无法简单地直接放到数组里。这里具体在题目AC代码中说明。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int main()
{
string str1,str2;
int a[2005],b[2005],c[4010];
cin>>str1>>str2;
//记录两者位数
int len1=str1.length();
int len2=str2.length();
//将每个字符转换位数字,并倒着记录在数组中
for(int i=1;i<=len1;i++)a[i]=str1[len1-i]-'0';
for(int i=1;i<=len2;i++)b[i]=str2[len2-i]-'0';
//c数组记录结果,把a数组里的一个数先和b数组里的每个数相乘,加入c数组中
for(int i=1;i<=len1;i++)
for(int j=1;j<=len2;j++)
c[i+j-1]+=a[i]*b[j];
//实现进位
for(int i=1;i<=len1+len2+1;i++)
if(c[i]>9){
c[i+1]+=c[i]/10;
c[i]%=10;
}
int len=len1+len2+1;
//结果长度不会超过len1+len2的值,先确定第一位要输出的数在哪
while(c[len]==0&&len>1)len--;
//输出
for(int i=len;i>0;i--)printf("%d",c[i]);
return 0;
}
看完高精度的相加和相乘后来运用一下:
题目描述:
用高精度计算出 S=1!+2!+3!+⋯+n!(n≤50)。
其中“!”表示阶乘,例如:5!=5×4×3×2×15! = 5。
输入格式:
一个正整数。
输出格式:
结果S。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int a[2000],sum[2000];
void pplus(int a[],int sum[])
{
for(int i=1;i<=1000;i++)
{
sum[i+1]+=(sum[i]+a[i])/10;
sum[i]=(sum[i]+a[i])%10;
}
}
void multi(int a[],int b)
{
int tmp=0;
for(int i=1;i<=1000;i++){
a[i]=a[i]*b+tmp;
tmp=a[i]/10;
a[i]%=10;
}
}
int main()
{
int n,i;
while(~scanf("%d",&n)){
memset(a,0,sizeof a);
memset(sum,0,sizeof sum);
a[1]=1;
for(i=1;i<=n;i++)
{
multi(a,i);
pplus(a,sum);
}
for(i=1000;i>=1;i--){
while(!sum[i])i--;
break;
}
for(int j=i;j>=1;j--)cout<<sum[j];
printf("\n");
}
return 0;
}
持续更新,欢迎关注。