时间复杂度和额外空间复杂度:
时间复杂度:
要了解时间复杂度,要先知道什么是常数时间操作。
常数时间操作:一个操作如果和样本的数据量没有关系,每次都是固定时间内完成的操作,叫做常数时间操作。(包括:位运算,加,减,乘,除,取余,数组寻址等)
例如:int p=3+5。p的取值所需的时间与数据的大小无关。
时间复杂度就是执行完一个流程所需常数时间操作,只保留N的最高阶项(不包括其系数),称为时间复杂度。
意义:评价两个个算法在数值趋向于正无穷时哪个更快。
例如:O(N)和O(N2),数值趋于无穷时显然,前者较快。
比较流程:1.比较时间复杂度 2.如果时间复杂度相等,构建多个数据,以实验的方式进行比较。(考虑到其固定时间不同的情况)
额外空间复杂度:
即完成一个流程需要新开的额外空间。
额外空间复杂度大小:
如果程序运行过程中,不需要额外的数据结构,只是使用了额外的几个变量。那么额外空间复杂度为O(1);
如果要申请一个和原数组大小一样的数组,那额外空间复杂度为O(n);
如果申请一个是原数组大小一半的数组,那额外空间复杂度为O(n)(因为系数是可以忽略的)