CF1499C Minimum Grid Path(思维+贪心)

博客探讨了一道关于寻找二维数组中步长最小路径的问题。作者通过分析得出一种贪心算法,但发现由于两个维度之间的步数相关性,该算法并不完全适用。解决方案是枚举每个维度的步数,每次都尝试让最小步数走得更远,然后选择总步数最小的情况。代码实现中使用了C++,并输出了每种情况下的最小路径总和。
摘要由CSDN通过智能技术生成

题目传送门

思路

话说这道题我分析出来了一个虚假的贪心:
我认为我现在让当前的步数代价走完全程(之前的肯定都只走一步),比较每一个的最小值,如果这个不用两个维度走的话大概率是对的,但是出现了问题在于这是两个维度,每一个维度虽然数值上不相关,但是步数关系上是相关的(比方说,我现在右向我只选了3组数据,但是上向就不能选第6组了(不能跳着选)),那么我们只需要让最小的步数尽量走的更多,每一次都枚举一遍,最后比较一下选最小的就可以了。

#include<iostream>
#include<map>
using namespace std;
typedef long long ll;
const ll modd=1e9+7;
ll a[2102100];
int main(){
	ll T;
	cin>>T;
	while(T--){
		ll n;
		cin>>n;
		for(ll i=1;i<=n;i++)cin>>a[i];
		ll res1=1e18,minn2=1e18;
		ll res2=1e18,minn1=1e18;
		ll sum1=0;
		ll sum2=0;
		ll ans=1e18;
		for(ll i=1;i<=n;i++){
			if(i%2){
				res1=0;sum1+=a[i];
				res1+=sum1;
				minn1=min(minn1,a[i]);
				res1+=(n-(i)/2-1)*minn1;
			}else{
				res2=0;sum2+=a[i];
				res2+=sum2;
				minn2=min(minn2,a[i]);
				res2+=(n-(i-1)/2-1)*minn2;
			}
			ans=min(ans,res1+res2);
		}
		cout<<ans<<endl;
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值