PTA(3)--Emergency

这篇博客介绍了如何使用Dijkstra算法解决紧急情况下的救援队分配问题。作者首先指出深度优先搜索和广度优先搜索在此问题上的不适用性,然后详细阐述了Dijkstra算法的应用,强调了算法的关键点和注意事项,包括救援队数量作为点权、最短路径的路径条数和最大救援队总和。
摘要由CSDN通过智能技术生成

PTA(3)–Emergency

在这里插入图片描述
在这里插入图片描述

解答:

1.深度优先搜索:

注意此处不能将对角线初始化为0,因为在没有救援队数量的属性时,自己访问自己对结果没有影响,但本题如果自己访问自己就会使同一个城市的救援队数量加两次

#include<iostream>
using namespace std;
int m, n, c1, c2;
int e[501][501];
int Min = 999999999;
int a, b, c, teams = 0;
int book[501] = {
    0 }, City[501],paths;
void dfs(int cur, int dis, int curteams) {
   
    if (dis > Min) return;
    if (cur == c2) {
   
        if (dis == Min) {
   //同距离结,判断是否需要更新队伍数
            if (curteams > teams) teams = curteams;
            paths++;
        }
        else {
   //如果不是同距离解,那么一定需要更新最小距离及队伍数量
            Min = dis;
            teams = curteams;
            paths=1;
        }
    }
    else {
   
        for (int i = 0; i < m; i++)
            if (e[cur][i] != 999999999 && book[i] == 0) {
   
                book[i] = 1;
                dfs(i, dis + e[cur][i], curteams + City[i]);
                book[i] = 0;
            }
    }

    return;
}
int main() {
   
    cin >> m >> n >> c1 >> c2;
    for (int i = 0; i < m; i++) {
   
        cin >> City[i];
    }
    for (int i = 0; i < m; i++
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值