[NOIP2011 提高组] 计算系数(排列组合,逆元)

P1313 [NOIP2011 提高组] 计算系数

题目描述

给定一个多项式 ( b y + a x ) k (by+ax)^k (by+ax)k ,请求出多项式展开后 x n × y m x^n\times y^m xn×ym项的系数。

输入格式

共一行,包含 5 5 5个整数,分别为 a a a , b b b , k k k , n n n , m m m每两个整数之间用一个空格隔开。

输出格式

1 1 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对 10007 10007 10007取模后的结果。

输入样例

1 1 3 1 2

输出样例

3

说明/提示

【数据范围】

对于 30 % 30\% 30% 的数据,有 0 ≤ k ≤ 100 ≤ k ≤ 10 0 ≤k ≤100≤k≤10 0k100k10

对于 50 % 50\% 50%的数据,有 a = 1 , b = 1 a = 1,b = 1 a=1,b=1

对于 100 % 100\% 100%的数据,有 0 ≤ k ≤ 1 , 000 0≤k ≤1,000 0k1,000 0 ≤ n , m ≤ k 0≤n, m≤k 0n,mk,且 n + m = k n+m=k n+m=k, 0 ≤ a , b ≤ 1 , 000 , 000 0 ≤a,b ≤1,000,000 0a,b1,000,000

noip2011提高组day2第1题

思路一

x n × y m x^n\times y^m xn×ym项的系数为 C k m × b m × a n C_k^m\times b^m\times a^n Ckm×bm×an。根据组合数的性质,有 C n m = C n − 1 m − 1 + C n − 1 m C_n^m=C_{n-1}^{m-1}+C_{n-1}^m Cnm=Cn1m1+Cn1m可以用动态规划的方法计算 C k m C_k^m Ckm d p [ i ] [ j ] = d p [ i − 1 ] [ j − 1 ] + d p [ i − 1 ] [ j ] dp[i][j]=dp[i-1][j-1]+dp[i-1][j] dp[i][j]=dp[i1][j1]+dp[i1][j]其中 d p [ i ] [ j ] dp[i][j] dp[i][j]代表 C i j C_i^j Cij,注意 d p [ 0 ] [ 0 ] = 1 dp[0][0]=1 dp[0][0]=1以及取余就可以了。
一个平平无奇的代码:

#include<cstdio>
using namespace std;
const int maxn=1005,mod=10007;
int dp[maxn][maxn],a,b,k,n,m;

signed main(){
    scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
    dp[0][0]=1;
    for(int i=1;i<=1000;i++){
        for(int j=0;j<=i;j++){
            dp[i][j]=(dp[i][j]+dp[i-1][j])%mod;
            if(j>=1)    dp[i][j]=(dp[i][j]+dp[i-1][j-1])%mod;
        }
    }
    a=a%mod;    b=b%mod;
    int am=1,bm=1;
    for(int i=1;i<=m;i++)   bm=(bm*b)%mod;
    for(int i=1;i<=n;i++)   am=(am*a)%mod;
    a=am*bm%mod*dp[k][m]%mod;
    printf("%d",a);
}

可以用快速幂计算 a n a^n an b m b^m bm,不过k最大为1000,直接算也可以。

思路二

前面分析到,答案为 C k m × b m × a n C_k^m\times b^m\times a^n Ckm×bm×an,关键在于计算 C k m C_k^m Ckm。可以根据定义, C k m = k ! ( k − m ) ! m ! C_k^m=\frac{k!}{(k-m)!m!} Ckm=(km)!m!k!
因为 k ! ( k − m ) ! m ! = k ! [ ( k − m ) ! m ! ] − 1 , ( m o d = 10007 ) \frac{k!}{(k-m)!m!}=k![(k-m)!m!]^{-1},(mod=10007) (km)!m!k!=k![(km)!m!]1(mod=10007),由于10007为质数,所以 k ! ( k − m ) ! m ! = k ! [ ( k − m ) ! m ! ] − 1 = k ! [ ( k − m ) ! m ! ] m o d − 2 , ( m o d = 10007 ) \frac{k!}{(k-m)!m!}=k![(k-m)!m!]^{-1}=k![(k-m)!m!]^{mod-2},(mod=10007) (km)!m!k!=k![(km)!m!]1=k![(km)!m!]mod2,(mod=10007)

#include<cstdio>
using namespace std;
const int mod=10007,maxn=1e6+5;
int a,b,k,n,m,f[maxn]={1};

int qpow(int a,int b){
    int ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        a=a*a%mod,b>>=1;
    }
    return ans;
}

int main(){
    for(int i=1;i<maxn;i++) f[i]=f[i-1]*i%mod;
    scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
    a%=mod; b%=mod;
    a=qpow(a,n);    b=qpow(b,m);
    int t=f[k-m]*f[m]%mod;
    t=qpow(t,mod-2);
    printf("%d\n",((f[k]*t%mod)*b%mod)*a%mod);
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

m0_51864047

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值