Acwing 4210数字

给定一个大于 2的十进制正整数 A

该数字在 2∼A−1 进制表示下的各位数字之和均可以求出。

例如,数字 123在 16 进制表示下,共有 2 位:第 1 位是 7,第2位是 11,各位数字之和为 18。

现在,请你将 A 在 2∼A−1 进制表示下的各位数字之和全部相加,并将得到的结果除以 A−2,最终结果以最简分数形式输出。

输入格式

一个十进制正整数 A。

输出格式

输出格式为 X/Y,其中 X表示输出答案的分子,Y表示输出答案的分母。

数据范围

前三个测试点满足 3≤A≤10
所有测试点满足 3≤A≤1000

输入样例1:

5

输出样例1:

7/3

输入样例2:

3

输出样例2:

2/1

关键点在于十进制转换成n进制、求最简分数

十进制转换n进制:

总结为“除N取余,逆序排列”

如图:

来自于:N进制与十进制之间的 转换(整数,小数) - 原则 - 博客园 (cnblogs.com) 

当然本题只要求将位数相加,所以不必在乎顺序

求最简分数:

化简分数要找到最大公约数

可以使用短除法、辗转相除法

这里使用辗转相除法,也称欧几里得算法求解

详解见此博客

求GCD(最大公约数)的两种方式 - Seaway-Fu - 博客园 (cnblogs.com)

AC代码

import java.io.*;
public class Main
{
	public static void main(String[] args) throws IOException
    {
        BufferedReader reader=new BufferedReader(new InputStreamReader(System.in));
        int A=Integer.parseInt(reader.readLine());
        int denominator=0;//分母
        for(int i=2;i<=A-1;i++) denominator+=digitSum(A,i);
        int gcf=gcd(denominator,A-2);
        denominator/=gcf;
        int molecule=(A-2)/gcf;//分子
        System.out.print(denominator+"/"+molecule);
    }
    //短除法求取n进制各位数之和
    public static int digitSum(int A,int r)
    {
        int result=0;
        while(A!=0)
        {
            result+=A%r;
            A/=r;
        }
        return result;
    }
    //辗转相除法求取最大公约数
    public static int gcd(int a,int b)
    {
        if(a%b==0)
            return b;
        else
            return gcd(b,a%b);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值