头歌平台-人工智能-机器学习-朴素贝叶斯

第3关:朴素贝叶斯分类算法流程

import numpy as np

class NaiveBayesClassifier(object):
    def __init__(self):
        '''
        self.label_prob表示每种类别在数据中出现的概率
        例如,{0:0.333, 1:0.667}表示数据中类别0出现的概率为0.333,类别1的概率为0.667
        '''
        self.label_prob = {}
        '''
        self.condition_prob表示每种类别确定的条件下各个特征出现的概率
        例如训练数据集中的特征为 [[2, 1, 1],
                              [1, 2, 2],
                              [2, 2, 2],
                              [2, 1, 2],
                              [1, 2, 3]]
        标签为[1, 0, 1, 0, 1]
        那么当标签为0时第0列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第1列的值为1的概率为0.5,值为2的概率为0.5;
        当标签为0时第2列的值为1的概率为0,值为2的概率为1,值为3的概率为0;
        当标签为1时第0列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第1列的值为1的概率为0.333,值为2的概率为0.666;
        当标签为1时第2列的值为1的概率为0.333,值为2的概率为0.333,值为3的概率为0.333;
        因此self.label_prob的值如下:     
        {
            0:{
                0:{
                    1:0.5
                    2:0.5
                }
                1:{
                    1:0.5
                    2:0.5
                }
                2:{
                    1:0
                    2:1
                    3:0
                }
            }
            1:
            {
                0:{
                    1:0.333
                    2:0.666
                }
                1:{
                    1:0.333
                    2:0.666
                }
                2:{
                    1:0.333
                    2:0.333
                    3:0.333
                }
            }
 
### 关于平台中的机器学习拉普拉斯平滑实现方法 拉普拉斯平滑是一种经典的统计技术,用于解决数据集中某些事件未出现而导致的概率估计为零的问题。这种方法通过向每个类别的计数增加一个小的常数值来调整概率分布[^3]。 #### 拉普拉斯平滑的核心思想 在实际应用中,特别是在自然语言处理领域,当训练集不足以覆盖所有可能的情况时,可能会遇到一些词频为零的现象。为了防止这种情况影响模型性能,可以采用拉普拉斯平滑法。其基本公式如下: 对于某个类别 \( C \),以及该类别下的单词 \( w_i \) 的频率计算方式为: \[ P(w_i|C) = \frac{count(C, w_i) + k}{\sum_{j} (count(C, w_j) + k)} \] 其中 \( count(C, w_i) \) 表示类别 \( C \) 下单词 \( w_i \) 出现的次数,\( k \) 是一个正整数(通常取 1),表示平滑参数[^2]。 #### 平台上的具体实现 虽然具体的平台并未公开详细的源码实现细节,但从一般性的机器学习框架来看,在平台上实现拉普拉斯平滑的方法可以通过以下方式进行模拟和扩展: ```python def laplace_smoothing(counts, vocabulary_size, alpha=1): """ 使用拉普拉斯平滑进行概率估算 参数: counts (int): 单词或特征的实际计数 vocabulary_size (int): 特征空间大小(即词汇表大小) alpha (float): 平滑系数,默认为1 返回: float: 经过平滑后的概率值 """ smoothed_probability = (counts + alpha) / (sum(counts.values()) + alpha * vocabulary_size) return smoothed_probability # 假设我们有一个简单的例子 word_counts = {'cat': 5, 'dog': 3, 'mouse': 0} vocabulary_size = len(word_counts) # 对每个单词应用拉普拉斯平滑 smoothed_probabilities = {word: laplace_smoothing({word: word_counts[word]}, vocabulary_size)[word] for word in word_counts} print(smoothed_probabilities) ``` 上述代码展示了如何利用 Python 编写一个函数来进行拉普拉斯平滑的操作。此函数接受三个输入参数:`counts`(字典形式记录各个单词的计数)、`vocabulary_size`(词汇量大小)以及可选的 `alpha`(默认设置为 1)。最终返回的是经过平滑之后的概率值。 #### 结合平台的特点 如果是在这样的在线实验教学环境中开发项目,则可以根据课程需求灵活调用类似的逻辑模块完成任务。比如构建朴素贝叶斯分类器时引入拉普拉斯修正机制以提高预测准确性;或者设计 NLP 应用程序时加入文本预处理阶段的数据增强手段等。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值