吴恩达深度学习系列课程课后习题(测试+编程题)

课后习题(测试+编程题)

最近在B站看吴恩达的深度学习系列课程,但是B站上没有题目,去coursea上又有限制,一年只能免费申请一门。于是,我便转向了万能的互联网,果然让我给找到了。特此转载一下,给需要帮助的人。
原文链接在此

下面可忽略,凑字数用

因为篇幅过短被批回了,那我就在叨叨一下吧。吴恩达的课程还是很不错的,非常详细,公式什么也讲的很清楚,适合入门。

### 吴恩达深度学习课程课后习题解析 吴恩达深度学习系列课程提供了丰富的理论知识和实践机会,帮助学员深入理解深度学习的核心概念和技术。为了更好地掌握这些知识点,完成课后的练习题目是非常重要的。 #### 一、关于测试题目的解答方法 针对选择类题目,建议先回顾对应章节的内容,特别是涉及到的关键算法原理及其应用场景等内容[^1]。例如,在讨论神经网络性能影响因素时提到,“对于相同的数据量,只要足够多,大型神经网络的表现往往优于小型模型;而对于同一神经网络而言,增加训练样本数量能够有效提升预测精度。”这表明当面对有限资源的情况下如何做出合理决策来优化模型效果[^3]。 #### 二、编程作业指导 对于编程部分,则更注重实际操作技能培养。以实现简单的线性回归为例: ```python import numpy as np from sklearn.linear_model import LinearRegression # 创建模拟数据集 X = np.array([[1], [2], [3]]) y = np.dot(X, 2) + 1 model = LinearRegression() model.fit(X, y) print(f'系数: {model.coef_}') print(f'截距: {model.intercept_}') ``` 上述代码展示了如何利用`sklearn`库中的`LinearRegression`模块快速构建并拟合一个简单的一元一次方程关系。通过这种方式可以加深对基础统计学概念的理解,并为进一步探索复杂模型打下坚实的基础[^5]。 另外,在处理更加复杂的任务如绘制成本变化曲线时,可以通过如下方式调用matplotlib库下的plot函数来进行直观展示: ```python import matplotlib.pyplot as plt import numpy as np costs = np.squeeze(d['costs']) plt.plot(costs) plt.ylabel('Cost') plt.xlabel('Iterations (per hundreds)') plt.title("Learning Rate =" + str(d["learning_rate"])) plt.show() ``` 这段脚本不仅实现了基本绘图功能,还加入了必要的标签说明以便于解读图表含义。这对于监控训练过程以及调整超参数具有重要意义[^4]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值