【面经】AI算法面经

AI算法

等待完成

框架

pytorch

pytorch

训练

layernorm和batchnorm区别

  • BatchNorm 是一种在训练过程中对每个小批量(mini-batch)数据进行归一化的技术。它通过规范化层的输入来减少内部协变量偏移,即确保网络的每一层输入数据的分布保持相对稳定。引入了额外的可训练参数(缩放因子和偏移)。
    • 可以减少梯度消失或爆炸的问题
    • 有时可以替代Dropout
    • 但在小批量大小下效果不佳
  • LayerNorm 是对神经网络中的单个样本的所有激活进行归一化,而不是整个小批量。这种归一化方式对批量大小不敏感,因此在批量大小较小或变化时更为稳定。
    • 并行处理不如BatchNorm高效

ML

[TODO]

NLP

[TODO]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值