前言:前缀和分为 一维前缀和 、二位前缀和,但无论是一维还是二维,其核心都是先将所有结果存入到另一个数据结构中(注意选用合适的方法,不要暴力求解),然后再根据题目要求,根据先前存储的值之间的相应关系来求得最终结果。
注:这里更多用到是数学思维。
一:【模板】一维前缀和
题目要求:
解题思路:
给你一个数组,目标是求出对应下标之间的和,按照先前所说的先得到所有结果,即求出 0~1、0~2、0~n-1所有数据的和并存入到一块新的空间中,以下图为例,原数组为:
按照上述想法,计算 前n个和,并分别存入到新的空间中,如下图所示:
当我们想得到任意两个下标之间的和时,只需要计算 dp[右端下标] - dp[左端下标-1]即可得到答案
思考1:如何优化求dp的算法?
答:是暴力求解吗?那肯定不是!想想暴力求解的过程中什么东西被重复计算了?
比如此时你求出了 前n-1个和,并存放到了 dp[n-1] 处,当你要求 前n个和 时,如果使用暴力解法,那 前n-1个数的和 是不是被重复计算了?那么优化的思路就来了,因为 dp[n-1] 已经保存了 前n-1个数的和,因此只需 dp[n-1] + arr[n] 即可得到 前n个数的和
即:dp[n] = dp[n-1] + arr[n];
思考2:上述公式 n-1 会出现越界问题,如何解决?
答:创建 n + 1 个大小的空间,并全部初始化为0,同时 dp 中下标为1位置处开始存储,这样即解决了越界问题,又不妨碍最终的计算结果。
实现代码:
#include <iostream>
#include <vector>
using namespace std;
int main() {
//创建一维数组
int n = 0;
int q = 0;
cin >> n >> q;
vector<int> arr(n+1);
for(int i = 1; i <= n; i++)
{
cin >> arr[i];
}
//创建dp
vector<long long> dp(n+1);
for(int i = 1; i <= n; i++)
{
dp[i] = dp[i-1] + arr[i];
}
//计算目标值
int l = 0;
int r = 0;
while(q--)
{
cin >> l >> r;
cout << dp[r] - dp[l-1] << endl;;
}
return 0;
}
二:【模板】二维前缀和
题目要求:
解题思路:
同样的思路:需要预先求出一个dp数组(优化算法),最后通过这个数组来计算最终答案。
此处是一个二维数组,dp中的每一个元素代表的是:从(1,1)位置到该元素位置所构成的矩阵中所有元素的和。
我们将该矩阵划分为四个区域,那么该矩阵所有元素的和为:(A+B)+(A+C)+D-A
即:dp[i][j] = dp[i][j-1] + dp[i-1][j] + arr[i][j] - dp[i-1][j-1];
上述公式中同样存在越界问题,因此二维数组的行和列应都为n+1个大小,并将所有元素置为0。
注:与一维前缀和求dp中每个元素类似,dp[i][j-1]、 dp[i-1][j]、dp[i-