python scipy.optimize 求解带边界约束的非线性规划报错“Positive directional derivative for linesearch”

问题背景

在数据处理过程中,需要求解形如下图的非线性规划:
  在这里插入图片描述
  (在我的学习任务中不等式约束边界会变化,上图示意一个特殊情况)

求解方法一:scipy.optimize

尝试利用scipy.optimize中的.minimize()函数进行求解,将等式与不等式约束存入cons字典中。

from scipy.optimize import minimize
import numpy as np

fun = lambda x : x[0] + x[1] + x[2]# 约束函数
cons = ({
   'type': 'eq', 'fun': lambda x: x[0]**2+ x[1]**2+ x[2]**2 - 1}, # xyz=1

{
   'type': 'ineq', 'fun': lambda x: 1-x[0]**2 },#  1 >= x**2
{
   'type': 'ineq', 'fun': lambda x: x[0]**2-1 },#  x**2 >=1

{
   'type': 'ineq', 'fun': lambda x: 0-x[1]**2 },
{
   'type': 'ineq', 'fun': lambda x: x[1]**
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值