注:本篇博客是在 温故而知新 -> 数据结构 ->树 -> 二叉树 的基础上,对二叉树的顺序存储进行进一步的解释!
链式存储
本篇博客将具体说明二叉树链式存储的相关知识,其将按照以下几个方面进行分步叙述!
1、概念
二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链表来指示元素的逻辑关系。
通常的方法是链表中每个结点由三个域组成,数据域 和 左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链。
2、结构
上述二叉链和三叉链的结构如下图,其中在二叉链与三叉链这两个图中空格代表空指针。
3、遍历
3.1 概念
遍历(Traversal)是指沿着某条搜索路线,依次对树中每个结点均做一次且仅做一次访问。
访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,是二叉树上进行其它运算之基础。
3.2 分类
前序/中序/后序的递归结构遍历:是根据访问结点操作发生位置命名
NLR
:前序遍历(Preorder Traversal
亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。LNR
:中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。LRN
:后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)
、L(Left subtree)
和R(Right subtree)
又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。
案例如下
层序遍历:除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。
可结合下图进行对比学习
4、实现
具体的实现将是对上述内容通过程序进行说明。
此处内容可点击下述链接进行查看!
侵权删~