大致题意:对于一个全为0的数列,你可以进行以下操作:选择一个长度为k的区间,对区间内的数加上等差数列,比如区间内的第一个数加1,第二个数加2,以此类推。请问要让全为0的序列中的每一个数都大于等于给出的序列,最小的操作次数是多少。
大致题解:考虑从给出的序列出发,每次选择区间减去等差数列(首项和即答案),直到所有数都小于等于0。 从最后一个数出发,算出想让当前这个数小于等于0,所选择的等差数列首项最小为多少。注意,当这个数的坐标小于k时,需要特殊判断一下。然后就相当于区间减去一个等差数列,用树状数组优化。
/*
树状数组直接支持的操作只有 维护前缀和 与 单点修改
1.现要区间加上等差数列,直接修改O(n)
2.若考虑对一阶差分进行修改,发现区间内所有数的也都会发生变化,也是O(n)
3.考虑对二阶差分进行修改,发现只需要对l,l+1,r+1,r+2进行修改,满足树状数组只能单点修改
根据二阶差分数组推到原数组的公式,我们可以发现原数组a[i] = n*∑ci - ∑(i-1) * c[i]
所以使用两个数组来分别维护 ∑ci 与 ∑(i-1) * c[i] 就相当于对二阶差分数组求两次前缀和得到原序列
*/
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define lowbit(x) (x&-x)
const int N = 3e5+10;
int n, k, res = 0, a[N];
int t1[N], t2[N];
void add(int x, int r, int v) { //r是因为本题比较特殊,下标超过r的数字无需在考虑,r单调减小,所以写小于等于r来节约时间
for(int i = x; i <= r; i += lowbit(i)) {
t1[i] += v; t2[i] += (x - 1) * v;
}
}
int query(int x) { //求1~x的前缀和
int res = 0;
for(int i = x; i; i -= lowbit(i)) {
res += x * t1[i] - t2[i]; //x相当于n
}
return res;
}
void dif() {
for(int i=n; i>=1; i--)
a[i] = a[i] - a[i-1];
}
signed main() {
cin.tie(0)->sync_with_stdio(0);
cin >> n >> k;
for(int i=1; i<=n; i++) {
cin >> a[i];
// add(i, a[i]), add(i + 1, -a[i]); 也可以不求a的二阶差分数组,直接当作在i位置加一个首相为a[i],公差为0的等差数列
// add(i + 1, -a[i]), add(i + 2, a[i]);
}
for(int i=1; i<=2; i++) dif(); //求两次差分数组
for(int i=1; i<=n; i++) add(i, n, a[i]);
int p = n;
while(true) { //从最后一位开始枚举,每次让第一个大于0的数清0,并且按照等差数列的规则对他之前的k-1个数字更新,用树状数组优化
if(p == -1) {
break;
}
int now = query(p), len = min(p, k); //注意考虑p < k 的情况,此时当时数字不是等差数列里的第k个数字
int s = now / len;
if(now % len) s ++;
res += s;
int ne = -1, l = max(p - k + 1, 1LL);
add(l, p, -s); //更新二阶差分矩阵
//add(p - t + 2, 0);add();add();
for(int j=p; j>=max(1LL, p-k); j--) {
if(query(j) > 0 && ne == -1) {
ne = j;
break;
}
}
p = ne;
}
cout << res << '\n';
}