Educational Codeforces Round 126 (Rated for Div. 2)-D. Progressions Covering(区间加等差数列/思维)

该博客介绍了如何使用树状数组高效解决一个算法问题:在一个全为0的数列上,通过选择区间并加上等差数列,使得数列中的每个元素都大于等于给定序列的对应元素。主要方法是从目标序列出发,逆向计算所需操作次数,并使用树状数组优化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem - D - Codeforces

大致题意:对于一个全为0的数列,你可以进行以下操作:选择一个长度为k的区间,对区间内的数加上等差数列,比如区间内的第一个数加1,第二个数加2,以此类推。请问要让全为0的序列中的每一个数都大于等于给出的序列,最小的操作次数是多少。

大致题解:考虑从给出的序列出发,每次选择区间减去等差数列(首项和即答案),直到所有数都小于等于0。 从最后一个数出发,算出想让当前这个数小于等于0,所选择的等差数列首项最小为多少。注意,当这个数的坐标小于k时,需要特殊判断一下。然后就相当于区间减去一个等差数列,用树状数组优化。 

 

/*	
	树状数组直接支持的操作只有 维护前缀和 与 单点修改
	1.现要区间加上等差数列,直接修改O(n)
	2.若考虑对一阶差分进行修改,发现区间内所有数的也都会发生变化,也是O(n)
	3.考虑对二阶差分进行修改,发现只需要对l,l+1,r+1,r+2进行修改,满足树状数组只能单点修改

	根据二阶差分数组推到原数组的公式,我们可以发现原数组a[i] = n*∑ci - ∑(i-1) * c[i]
	所以使用两个数组来分别维护 ∑ci 与 ∑(i-1) * c[i] 就相当于对二阶差分数组求两次前缀和得到原序列
*/

#include<bits/stdc++.h>
using namespace std;
#define int long long
#define lowbit(x) (x&-x)
const int N = 3e5+10;
int n, k, res = 0, a[N];
int t1[N], t2[N]; 

void add(int x, int r, int v) { //r是因为本题比较特殊,下标超过r的数字无需在考虑,r单调减小,所以写小于等于r来节约时间
	for(int i = x; i <= r; i += lowbit(i)) {
		t1[i] += v; t2[i] += (x - 1) * v; 
	}
}
int query(int x) { //求1~x的前缀和
	int res = 0;
	for(int i = x; i; i -= lowbit(i)) {
		res += x * t1[i] - t2[i];  //x相当于n
	}
	return res;
}

void dif() {
	for(int i=n; i>=1; i--)
	a[i] = a[i] - a[i-1];
}

signed main() {
	cin.tie(0)->sync_with_stdio(0);
	cin >> n >> k;
	for(int i=1; i<=n; i++) {
		cin >> a[i];
		// add(i, a[i]), add(i + 1, -a[i]);   也可以不求a的二阶差分数组,直接当作在i位置加一个首相为a[i],公差为0的等差数列
		// add(i + 1, -a[i]), add(i + 2, a[i]);
	}
	for(int i=1; i<=2; i++) dif(); //求两次差分数组
	for(int i=1; i<=n; i++) add(i, n, a[i]);

	int p = n;
	while(true) { //从最后一位开始枚举,每次让第一个大于0的数清0,并且按照等差数列的规则对他之前的k-1个数字更新,用树状数组优化
		if(p == -1) {
			break;
		}
		int now = query(p), len = min(p, k); //注意考虑p < k 的情况,此时当时数字不是等差数列里的第k个数字
		int s = now / len;
		if(now % len) s ++;
		res += s; 
		int ne = -1, l = max(p - k + 1, 1LL); 
		add(l, p, -s); //更新二阶差分矩阵
		//add(p - t + 2, 0);add();add();
		for(int j=p; j>=max(1LL, p-k); j--) {
			if(query(j) > 0 && ne == -1) {
				ne = j;
				break; 
			}
		}
		p = ne;
	}
	cout << res << '\n';

}

"educational codeforces round 103 (rated for div. 2)"是一个Codeforces平台上的教育性比赛,专为2级选手设计评级。以下是有关该比赛的回答。 "educational codeforces round 103 (rated for div. 2)"是一场Codeforces平台上的教育性比赛。Codeforces是一个为程序员提供竞赛和评级的在线平台。这场比赛是专为2级选手设计的,这意味着它适合那些在算法和数据结构方面已经积累了一定经验的选手参与。 与其他Codeforces比赛一样,这场比赛将由多个问题组成,选手需要根据给定的问题描述和测试用例,编写程序来解决这些问题。比赛的时限通常有两到三个小时,选手需要在规定的时内提交他们的解答。他们的程序将在Codeforces的在线评测系统上运行,并根据程序的正确性和效率进行评分。 该比赛被称为"educational",意味着比赛的目的是教育性的,而不是针对专业的竞争性。这种教育性比赛为选手提供了一个学习和提高他们编程技能的机会。即使选手没有在比赛中获得很高的排名,他们也可以从其他选手的解决方案中学习,并通过参与讨论获得更多的知识。 参"educational codeforces round 103 (rated for div. 2)"对于2级选手来说是很有意义的。他们可以通过解决难度适中的问题来测试和巩固他们的算法和编程技巧。另外,这种比赛对于提高解决问题能力,锻炼思维和提高团队合作能力也是非常有帮助的。 总的来说,"educational codeforces round 103 (rated for div. 2)"是一场为2级选手设计的教育性比赛,旨在提高他们的编程技能和算法能力。参与这样的比赛可以为选手提供学习和进步的机会,同时也促进了编程社区的交流与合作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值