A. Array Balancing
题意:给出a,b两个数组可以交换两队数组内位置相同的数
求相邻两数绝对值和的最小值
对于每个点求交换与不交换的贡献值取min即可
#include<bits/stdc++.h>
using namespace std;
#define AC return 0;
#define int long long
const int MAXN=37;
int a[MAXN],b[MAXN];
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
int t;
cin>>t;
while(t--){
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=1;i<=n;i++)cin>>b[i];
int ans=0;
for(int i=2;i<=n;i++)
ans+=min(abs(a[i]-a[i-1])+abs(b[i]-b[i-1]),abs(a[i]-b[i-1])+abs(b[i]-a[i-1]));
cout<<ans<<endl;
}
AC
}
B. Getting Zero
题意:给出一个数和取模32768,有两个操作加一取模和乘二取模
问最小次数使该数变为0
注意到模数为32768是2的15次,所以对于一个数一直乘二最大也只需15次,然后从0-15暴力枚举加一次数
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define AC return 0;
#define int long long
const int MAXN=5e4+7;
const int MOD=32768;
int a[MAXN];
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
int n;
cin>>n;
for(int i=1;i<=n;i++)cin>>a[i];
for(int i=1;i<=n;i++){
int ans=15;
for(int j=0;j<=15;j++){
int num=(a[i]+j)%MOD;int cnt=0;
while(num!=0){
num=num*2%MOD;
cnt++;
}
ans=min(ans,j+cnt);
}
cout<<ans<<" ";
}
AC
}
C. Water the Trees
题意:给出n颗树的高度,在一天内你可以选择浇树或者不浇,偶数天浇树树长高2,奇数为1
问最短天数使所有树都一样高
统计需要在奇数天浇和偶数天的次数,再根据数量判断,可以把长高2拆分成在奇数天浇两天
需要注意的是最后的高度不一定是树高度的最大值,有可能是+1,因为这样可以改变奇偶浇的次数,如果奇数过多的话只能隔一天浇一次,而把部分奇数变为偶数可以穿插在奇数天中,有可能使天数变短
#include<bits/stdc++.h>
using namespace std;
#define int long long
#define AC return 0;
const int MAXN=3e5+7;
int h[MAXN],Max=0,n,ans;
void check(int a){
int o=0,e=0;
for(int i=1;i<=n;i++){
o+=(a-h[i])&1;e+=(a-h[i])/2;//统计次数
}
if(o==e||o==e+1)ans=min(ans,o+e);//如果刚好一一配对或者奇数天多一个直接加
else if(o>e)ans=min(ans,2*e+1+(o-e-1)*2);//奇数天多,先一一配对后面一次奇数操作算两天
else{
if((e-o)%3!=2)ans=min(ans,2*o+(e-o)/3*4+(e-o)%3*2);//将三次偶数天的操作拆分为1212
else ans=min(ans,2*o+(e-o)/3*4+3);//还剩两次偶数天操作拆分为121
}
}
signed main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
cin>>t;
while(t--){
cin>>n;
Max=0;
for(int i=1;i<=n;i++){
cin>>h[i];
Max=max(Max,h[i]);
}
ans=Max*n*2;
check(Max);
check(Max+1);
cout<<ans<<endl;
}
AC
}
D. Progressions Covering
被Hack了很难受orz
题意:给一个长度为n的数组b,和一个初始化为0的a数组。给出一种操作选取长度为k的区间从左到右每个数加分别加1,2,3...k
问最少操作次数使a数组每个位置的值大于等于b
考虑贪心。对于一个1-(k+1)的区间我们先对2-(k+1)做操作使k+1位置的数满足条件再对1-k做操作肯定比反过来次数要少,所以从后往前去贪心是可行的。然后对于每个位置用k去加一定是最快的
#include<bits/stdc++.h>
using namespace std;
#define AC return 0;
#define int long long
const int MAXN=3e5+7;
int a[MAXN],b[MAXN];
signed main(){
int n,k;
cin>>n>>k;
for(int i=1;i<=n;i++)cin>>b[i];
int ans=0,cnt=0,add=0;
for(int i=n;i>=1;i--){
add-=cnt;//每次前面一个数都比后一个小1,一共有cnt操作作用在这两个数上
if(i<=n-k)cnt-=a[i+k];//对于前一个数来说i+k的操作已经影响不到了所以减去
int t=min(i,k);//对于前k个点最大只能加i
if(add<b[i]){
int num=(b[i]-add-1)/t+1;
a[i]=num;//每个点的操作次数
ans+=num;
cnt+=num;//长度为k区间内的操作次数总和
add+=num*t;
}
}
cout<<ans<<endl;
}
如有问题劳烦指正
edu场常常被教育c题也是没初始化领到两个wa