[积性函数、杜教筛、莫比乌斯函数入门]学习总结

什么是积性函数?

1.数论函数

在数论上,算术函数(或称数论函数)指定义域为正整数、陪域为复数的函数,每个算术函数都可视为复数的序列。
最重要的算术函数是积性及加性函数。算术函数的最重要操作为狄利克雷卷积,对于算术函数集,以它为乘法,一般函数加法为加法,可以得到一个阿贝尔环。

2.积性函数

积性函数指对于所有互质的整数a和b有性质f(ab)=f(a)f(b)的数论函数。

  • 定理1.1:积性函数的和函数也是积性函数,如果f是积性函数,那么f的和函数 F ( n ) = ∑ d ∣ n f ( d ) F(n) = \sum_{d|n}f(d) F(n)=dnf(d)也是积性函数。
  • 常见的积性函数:
    I ( x ) 恒 等 函 数 , I ( n ) = 1 I(x)恒等函数,I(n) = 1 I(x)I(n)=1
    i d ( n ) : 单 位 函 数 , i d ( n ) = n id(n):单位函数,id(n) = n id(n):id(n)=n
    I k ( n ) : 幂 函 数 , I k ( n ) = n k I_k(n):幂函数,I_k(n)=n^k Ik(n):Ik(n)=nk
    ϵ ( n ) : 原 函 数 , ϵ ( n ) = { 1        ( n = 1 ) 0        ( n > 1 ) \epsilon(n):原函数,\epsilon(n) = \begin{cases} 1 ~~~~~~(n = 1) \\ 0 ~~~~~~(n > 1) \end{cases} ϵ(n):ϵ(n)={1      (n=1)0      (n>1)
    σ ( n ) : 因 子 和 函 数 , σ ( n ) = ∑ d ∣ n d σ(n):因子和函数,σ(n) = \sum_{d|n}d σ(n):σn=dnd
    d ( n ) : 约 数 个 数 , d ( n ) = ∑ d ∣ n 1 d(n):约数个数,d(n)=\sum_{d|n}1 d(n)d(n)=dn1
    μ ( n ) : 莫 比 乌 斯 函 数 \mu(n):莫比乌斯函数 μ(n):
    g c d ( n , k ) : 最 大 公 因 子 , 当 k 固 定 的 情 况 gcd(n , k):最大公因子,当k固定的情况 gcd(n,k)k

狄利克雷卷积

f , g f,g f,g是算数函数,记 f , g f,g f,g的狄利克雷卷积是 f ∗ g f*g fg, 定义为 ( f ∗ g ) ( n ) = ∑ d ∣ n f ( d ) g ( n d ) (f*g)(n) = \sum_{d|n}f(d)g(\cfrac{n}{d}) (fg)(n)=dnf(d)g(dn)

狄利克雷卷积满足:交换律,结合律,分配律

莫比乌斯函数

1.莫比乌斯函数( μ ( x ) \mu(x) μ(x))的定义:
     μ ( x ) = { 0                ( ∃ α i ⩾ 2 ) ( − 1 ) k        ( ∀ α i = 1 ) \mu(x) = \begin{cases} 0 ~~~~~~~~~~~~~~(\exist\alpha_i \geqslant2) \\ (-1)^k ~~~~~~(\forall\alpha_i=1) \end{cases} μ(x)={0              (αi2)(1)k      (αi=1)
2.莫比乌斯函数( μ ( x ) \mu(x) μ(x))的性质:
     若 有 : ϵ ( x ) = ∑ d ∣ n μ ( d ) , 那 么 : ϵ ( x ) = { 1        ( n = 1 ) 0        ( n > 1 ) 若有:\epsilon(x) = \sum\limits_{d|n}\mu(d),那么:\epsilon(x) = \begin{cases} 1 ~~~~~~(n = 1) \\ 0 ~~~~~~(n > 1) \end{cases} ϵ(x)=dnμ(d):ϵ(x)={1      (n=1)0      (n>1)

莫比乌斯反演

提到莫比乌斯函数,那莫比乌斯反演必不可少。
   公式一:
若 F ( n ) = ∑ d ∣ n f ( d ) , 则 f ( n ) = ∑ d ∣ n μ ( d ) ∗ F ( n d ) 若F(n) = \sum\limits_{d|n}f(d),则f(n)=\sum\limits_{d|n}\mu(d)*F(\cfrac{n}{d}) F(n)=dnf(d),f(n)=dnμ(d)F(dn)
   公式二:
若 F ( n ) = ∑ n ∣ d f ( d ) , 则 f ( n ) = ∑ n ∣ d μ ( d n ) ∗ F ( d ) 若F(n) = \sum\limits_{n|d}f(d),则f(n)=\sum\limits_{n|d}\mu(\cfrac{d}{n})*F(d) F(n)=ndf(d),f(n)=ndμ(nd)F(d)
关于莫比乌斯反演的证明,会在不久后更新。

杜教筛公式

杜教筛是用于解决数论函数f(x)的前缀和的问题.
如: s ( n ) = ∑ i = 1 n f ( i ) s(n) = \sum_{i = 1}^{n}f(i) s(n)=i=1nf(i)

构造 h = g ∗ f h = g * f h=gf

∑ i = 1 n h ( i ) = ∑ i = 1 n ∑ d ∣ i g ( d ) f ( i d ) \sum_{i=1}^{n}h(i)=\sum_{i=1}^{n}\sum_{d|i}g(d)f(\cfrac{i}{d}) i=1nh(i)=i=1ndig(d)f(di)
= ∑ d = 1 n g ( d ) ∑ d ∣ i n f ( i d ) =\sum_{d = 1}^{n}g(d)\sum_{d|i}^{n}f(\cfrac{i}{d}) =d=1ng(d)dinf(di)
= ∑ d = 1 n g ( d ) ∑ i = 1 [ n d ] f ( i ) =\sum_{d= 1}^{n}g(d)\sum_{i =1}^{[\cfrac{n}{d}]}f(i) =d=1ng(d)i=1[dn]f(i)
= ∑ d = 1 n g ( d ) s ( [ n d ] ) =\sum_{d=1}^{n}g(d)s([\cfrac{n}{d}]) =d=1ng(d)s([dn])
得到
∑ i = 1 n h ( i ) = ∑ d = 1 n g ( d ) s ( [ n d ] ) \sum_{i=1}^{n}h(i)=\sum_{d=1}^{n}g(d)s([\cfrac{n}{d}]) i=1nh(i)=d=1ng(d)s([dn]
提出第一项
∑ i = 1 n h ( i ) = g ( 1 ) s ( n ) + ∑ d = 2 n g ( d ) s ( [ n d ] ) \sum_{i=1}^{n}h(i) =g(1)s(n) + \sum_{d=2}^{n}g(d)s([\cfrac{n}{d}]) i=1nh(i)=g(1)s(n)+d=2ng(d)s([dn]
得到杜教筛公式:
g ( 1 ) s ( n ) = ∑ i = 1 n h ( i ) − ∑ d = 2 n g ( d ) s ( [ n d ] ) g(1)s(n)= \sum_{i=1}^{n}h(i) - \sum_{d=2}^{n}g(d)s([\cfrac{n}{d}]) g(1)s(n)=i=1nh(i)d=2ng(d)s([dn]

理解:翻遍CSDN,鲜有人详细证明步骤二,但第二步的变换却是杜教筛的精华,这边记录下自己的理解:1式枚举了每一个i,对于每一个i,又枚举了每一个d,我们目光关注在g(d)这个东西上,发现:d是可以取遍所有n的,对于每一个g(d),都有 f ( i d ) f(\cfrac{i}{d}) f(di)其中, i × d < = n i \times d <= n i×d<=n,并且全部能取到,所以第二步"杜教筛变换"是对的.


栗子:求欧拉函数的前n项。
可以直接套用杜教筛公式:
由 于 i d ( n ) = ∑ d ∣ n ϕ ( x ) 由于id(n) = \sum_{d|n}\phi(x) id(n)=dnϕ(x)
构 造 h ( x ) = i d ( x ) , g ( x ) = ϕ ( x ) , f ( x ) = I ( x ) 构造h(x) = id(x) , g(x) = \phi(x) ,f(x) = I(x) h(x)=id(x),g(x)=ϕ(x),f(x)=I(x)
代入杜教筛公式得:
s ( n ) = ∑ i = 1 n i − ∑ i = 2 n s ( [ n i ] ) s(n) = \sum_{i = 1}^{n}i - \sum_{i = 2}^{n}s([\cfrac{n}{i}]) s(n)=i=1nii=2ns([in])
代码

#include <unordered_map>
#include <iostream>

using namespace std;

typedef long long LL;

const int N = 5e6 + 10;
const int mod = 1e9 + 7;
const int inv2 = 500000004;

unordered_map<LL , int> mp;
int primes[N] , cnt , phi[N] , sum[N];
bool st[N];

void init(int n)
{
	phi[1] = 1;
	for(int i = 2;i <= n;i ++)
	{
		if(!st[i])
		{
			primes[cnt ++ ] = i;
			phi[i] = i - 1;	
		}
		
		for(int j = 0;primes[j] <= n / i;j ++)
		{
			st[primes[j] * i] = true;
			if(i % primes[j] == 0)
			{
				phi[i * primes[j]] = phi[i] * primes[j];
				break;
			}
			phi[i * primes[j]] = phi[i] * (primes[j] - 1);
		}
	}
	
	for(int i = 1;i < n;i ++) sum[i] = (sum[i - 1] + phi[i]) % mod;
}

LL get(LL k ,LL x)
{
	return k / (k / x);
}

LL sol(LL n)
{
	if(n < N - 1) return sum[n];
	if(mp[n]) return mp[n];
	
	LL ans = ((n % mod) * ((n + 1) % mod)) % mod * inv2 % mod;
//	LL ans = n % mod * (n + 1) % mod * inv2 % mod;

	for(LL l = 2 , r;l <= n;l = r + 1)
	{
		r = get(n , l);
//		ans = ans - (r - l + 1) * sol(n / i);
		ans = (ans - (r - l + 1) % mod * sol(n / l) % mod + mod) % mod;
	}
	
	return mp[n] = ans;
}

int main()
{
	init(N - 1);
	LL n;cin >> n;cout << sol(n) << endl;
	return 0;
}
技巧
  • μ ∗ I = ϵ \mu * I = \epsilon μI=ϵ
  • ϕ ∗ I = i d \phi * I = id ϕI=id
  • μ ∗ i d = ϕ \mu * id = \phi μid=ϕ

参考文献:

1.杜教筛 以及积性函数的前世今生 --算法竞赛专题解析(4)
2.百度百科
------数论函数
------积性函数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值