主成分分析(PCA)

本文介绍了主成分分析(PCA)的基本概念,通过一个二维数据集的例子展示了PCA如何将数据简化成一维,同时保持关键信息。使用sklearn库的PCA API进行了数据计算演示。接着,结合用户对物品类别的喜好数据,通过PCA进行降维分析,最终得到降维后的数据,便于进一步的用户细分研究。
摘要由CSDN通过智能技术生成

一、什么是主成分分析(PCA)

  • 定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量
  • 作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。
  • 应用:回归分析或者聚类分析当中

那么更好的理解这个过程呢?
1.我们来看一张图
在这里插入图片描述
2. 计算案例理解
3. 假设对于给定5个点,数据如下

(-1,-2) (-1, 0) ( 0, 0) ( 2, 1) ( 0, 1)

在这里插入图片描述
要求:将这个二维的数据简化成一维? 并且损失少量的信息
在这里插入图片描述
这个过程如何计算的呢?找到一个合适的直线,通过一个矩阵运算得出主成分分析的结果
在这里插入图片描述

二、API

sklearn.decomposition.PCA(n_components=None)
  • 将数据分解为较低维数空间
  • n_components:
  • 小数:表示保留百分之多少的信息
  • 整数:减少到多少特征
PCA.fit_transform(X) X:numpy array格式的数据[n_samples,n_features]
  • 返回值:转换后指定维度的array

数据计算检测

先拿个简单的数据计算一下
在这里插入图片描述
返回结果:
在这里插入图片描述

三、 案例:探究用户对物品类别的喜好细分降维

在这里插入图片描述
数据如下:

  • order_products__prior.csv:订单与商品信息
  • 字段:order_id, product_id, add_to_cart_order, reordered
  • products.csv:商品信息
  • 字段:product_id, product_name, aisle_id, department_id
  • orders.csv:用户的订单信息
  • 字段:order_id,user_id,eval_set,order_number,….
  • aisles.csv:商品所属具体物品类别
  • 字段: aisle_id, aisle

1.需求

在这里插入图片描述
在这里插入图片描述

2 分析

  • 合并表,使得user_id与aisle在一张表当中
  • 进行交叉表变换
  • 进行降维

3 完整代码

在这里插入图片描述
在这里插入图片描述
返回结果

(206209, 44)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hyk今天写算法了吗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值