习题推荐算法

2022-2024年文献整理

Artificial Intelligence in Science Education (2013–2023): ResearchTrends in Ten Years

Artificial Intelligence in Science Education (2013–2023): Research Trends in Ten Years | Journal of Science Education and Technology


A systematic literature review on educationalrecommender systems for teaching and learning: researchtrends, limitations and opportunities

A systematic literature review on educational recommender systems for teaching and learning: research trends, limitations and opportunities | Education and Information Technologies


Collaborative Filtering Based on Diffusion Models:

Unveiling the Potential of High-Order Connectivity

ACM SIGIR Conference

论文背景

在推荐系统领域,协同过滤(Collaborative Filtering, CF)方法广泛应用于捕捉用户与物品之间的隐式关系,进而为用户推荐可能感兴趣的物品。传统的协同过滤方法主要依赖于用户-物品交互矩阵,通过矩阵分解、图神经网络等技术进行建模。然而,这些方法通常只关注直接的用户-物品交互,而忽视了用户与物品之间的高阶连接信息(如共同邻居等)。这可能导致模型对复杂用户偏好和物品特征的捕捉能力不足,影响推荐效果。

研究内容

提出了一种基于扩散模型的协同过滤方法(CF-Diff),通过引入高阶连通性信息来提升推荐系统的性能。

  • 正向扩散过程:逐步向用户-物品交互矩阵中添加高斯噪声,使数据分布逐步接近高斯分布,为后续的去噪过程做好准备。
  • 反向去噪过程:利用反向去噪模型逐步恢复原始的用户-物品交互矩阵,通过去噪过程提取有效的协作信号。通过正向扩散逐步添加噪声,并通过反向去噪逐步恢复数据,形成完整的数据处理流程。
  • 交叉注意力引导的多跳自编码器(CAM-AE):设计一种新型的自编码器结构,结合高阶连通性信息和交叉注意力机制,提升去噪过程的效果。使得去噪模型能够有效聚合多跳邻居的信息。

Is Contrastive Learning Necessary? A Study of Data Augmentation vs Contrastive Learning in Sequential Recommendation

Proceedings of the ACM Web Conference 2024 (WWW ’24)

研究背景

数据稀疏性问题是开发序列推荐系统时的主要障碍。近年来,对比学习(Contrastive Learning, CL)因其在从用户-物品交互数据中提取自监督信号的能力而备受关注,并被用于增强物品表示。然而,数据增强(Data Augmentation, DA)作为CL的基本组成部分,并没有得到充分的研究。本研究旨在探讨仅通过数据增强是否能取得比对比学习更好的推荐效果。

研究内容

本研究旨在探讨仅通过数据增强是否能取得比对比学习更好的推荐效果。通过系统对比8种广泛使用的序列级数据增强策略和3种最先进的对比学习方法,评估它们在序列推荐算法中的性能。结论表明,某些序列级增强策略可以实现更优越的性能,同时需要更少的计算资源。

数据增强策略:

  • 插入(Insert)
  • 删除(Delete)
  • 替换(Replace)
  • 裁剪(Crop)
  • 遮蔽(Mask)
  • 重排(Reorder)
  • 子集分割(Subset-split)
  • 滑动窗口(Slide-window)

对比学习方法:

  • CL4SRec:使用裁剪、遮蔽和重排三种序列级别的增强方法生成正样本对。
  • CoSeRec:基于项目关联生成增强序列,提高正样本对的质量。
  • ICLRec:采用聚类技术捕捉用户的潜在意图。

Multi-Level Sequence Denoising with Cross-Signal Contrastive Learning for Sequential Recommendation

Elsevier

研究背景

序列推荐系统(Sequential Recommendation Systems, SRS)旨在根据用户的历史交互数据预测其未来的行为。然而,用户的交互序列中常常包含噪声项,如误点击或恶意虚假交互,这对提取用户偏好和生成推荐造成了显著挑战。传统方法通过分配较低的注意力权重或直接丢弃噪声项来处理这些问题,但这些方法要么容易过拟合噪声项,要么忽略了有价值的信息。

研究内容

提出了一种新的序列推荐模型,称为多层次序列去噪与跨信号对比学习(MSDCCL)。该模型通过结合“软”去噪和“硬”去噪策略,来同时减轻用户交互序列中的噪声影响。

  • 目标感知的用户兴趣提取器:长期兴趣通过Transformer编码器捕捉,短期兴趣通过目标感知卷积序列嵌入捕捉。通过前馈神经网络将长短期兴趣融合,形成用户的兴趣表示。
  • 软硬级别序列去噪模块:
  • 软级别去噪:基于注意力机制,分配较低的权重给噪声项,从而减轻它们的影响。
  • 硬级别去噪:通过Gumbel-Softmax函数生成二值硬信号,明确去除噪声项,并通过对比学习增强用户兴趣表示。
  • 跨信号对比学习:通过对比学习最大化正样本对的相关性,最小化负样本对的相关性。
  • S形课程学习:模拟人类学习模式,通过逐渐增加“困难”实例的学习,以S形函数方式提升模型性能。

  • 19
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值