【算法笔记】:区间覆盖问题:贪心算法

本文详细阐述了贪心算法的两个关键特性:最优子结构和贪心选择性质。通过剪切法(cut&paste)证明了贪心算法在覆盖问题中具有最优子结构,即去掉问题的一个部分后,剩余部分的最优解仍然是最优的。同时,解释了贪心选择性质如何在每一步选择局部最优解来达到全局最优。内容深入浅出,适合算法学习者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 证明贪心算法的正确性:

下面证明:

(1)最优子结构:

假设结果有n个区间,去掉最后一个区间及对应的点,则前n-1个区间仍然是覆盖所有点的所用的最少区间(最优解的子结构是子问题的最优解)

证明:

cut&paste(剪切法,本质是反证法)

假设一共M个点,覆盖所有的点至少需要n个区间,最后一个区间覆盖m个点

假设前n-1个区间不是子问题的最优解,即n-1不是覆盖前M-m个点的最少区间个数,则一定存在N,是覆盖M-m个点的最优解,且N<n-1,用N替代n-1,可得覆盖所有点最少区间个数为N+1<n

和假设至少需要n个区间矛盾。所以,问题具有最优子结构

(2)贪心选择性质:

 

 

参考:
算法设计与分析

百度百科

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值