动态规划一

动态规划一>Dynamic Programming


动态规划定义

动态规划问题是分治思想的延伸,简单说就是大事化小,小事化无;

动态规划具备的特点

  • 将原有问题分解为相似的子问题;
  • 所有的子问题都只需要解决一次
  • 储存子问题的解;

动态规划本质

动态规划的本质:就是对问题状态的定义和状态转移方程的定义(状态以及状态之间的递推关系)

解决动态规划问题考虑点

  1. 状态定义;
  2. 状态间的转移方程定义;
  3. 状态的初始化;
  4. 返回结果;

注意定义的状态一定要形成递推关系

适应场景:最大值/最小值、可不可行、是不是、方案个数;

范例1:斐波那契数列

在这里插入图片描述

思路1: 递归

public class Solution {
    public int Fibonacci(int n) {
 
        if(n==0){
            return 0;
        }
        if(n==1){
            return 1;
        }
        return Fibonacci(n-1)+Fibonacci(n-2);
    }
}

性能分析

  • 时间复杂度:O(2^N),随着 N 逐渐增大,效率低;
  • 输入较大时,可能会出现栈溢出;
  • 递归过程中有较多的重复计算;

思路2: 动态规划

(1)状态F(i):第 i 项的值
(2)状态转移方程:
F(i) = F(i-1)+F(i-2)
(3)状态初始化:F(0)=0,F(1)=1;
(4)返回结果:F(n)

public class Solution {
    public int Fibonacci(int n) {
 
        if(n==0){
            return 0;
        }
        if(n==1){
            return 1;
        }
        //状态定义及初始化
        int F0=0;
        int F1=1;
        int Fn=0;
        //状态转移方程
        for(int i=2;i<=n;i++) {
        Fn=F0+F1;
        //更新中间状态
        F0=F1;
        F1=Fn;
        }
      return Fn;
    }
}

性能分析

  • 时间复杂度:O(N);
  • 空间复杂度:O(1);
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值