动态规划一>Dynamic Programming
动态规划定义
动态规划问题是分治思想的延伸,
简单说就是大事化小,小事化无;
动态规划具备的特点
- 将原有问题分解为相似的子问题;
- 所有的子问题都只需要解决一次;
- 储存子问题的解;
动态规划本质
动态规划的本质
:就是对问题状态的定义和状态转移方程的定义(状态以及状态之间的递推关系)
解决动态规划问题考虑点:
- 状态定义;
- 状态间的转移方程定义;
- 状态的初始化;
- 返回结果;
注意:定义的状态一定要形成递推关系
适应场景:最大值/最小值、可不可行、是不是、方案个数;
范例1:斐波那契数列
思路1: 递归
public class Solution {
public int Fibonacci(int n) {
if(n==0){
return 0;
}
if(n==1){
return 1;
}
return Fibonacci(n-1)+Fibonacci(n-2);
}
}
性能分析:
- 时间复杂度:
O(2^N)
,随着 N 逐渐增大,效率低; - 输入较大时,可能会出现栈溢出;
- 递归过程中有较多的重复计算;
思路2: 动态规划
(1)状态F(i):第 i 项的值
(2)状态转移方程:
F(i) = F(i-1)+F(i-2)
(3)状态初始化:F(0)=0,F(1)=1;
(4)返回结果:F(n)
public class Solution {
public int Fibonacci(int n) {
if(n==0){
return 0;
}
if(n==1){
return 1;
}
//状态定义及初始化
int F0=0;
int F1=1;
int Fn=0;
//状态转移方程
for(int i=2;i<=n;i++) {
Fn=F0+F1;
//更新中间状态
F0=F1;
F1=Fn;
}
return Fn;
}
}
性能分析:
- 时间复杂度:O(N);
- 空间复杂度:O(1);