时间序列——指数平滑法

文章介绍了指数平滑法的基本公式和不同类型,包括一次、二次和三次指数平滑,并通过SPSS展示了操作步骤,如数据处理、时间序列创建及模型分析。虽然R方显示其拟合效果可能不如ARIMA模型,但指数平滑法仍是一种实用的预测工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

理论知识参考自时间序列分析预测实战之指数平滑法 - 知乎 (zhihu.com)

SPSS操作可以对照我之前的博客(3条消息) 时间序列ARIMA模型_m0_52124992的博客-CSDN博客

一、理论知识

1、指数平滑法的基本公式:

,其中

  • St--第t期的预测值(或指数平滑值);

  • yt--第t期的实际值;

  • St − 1--第t-1期的预测值(或指数平滑值);

  • a--平滑常数,其取值范围为[0,1];

简单来说就是:任一期的指数平滑值都是本期实际观察值与前一期指数平滑值的加权平均,也可以理解为下一期数据的预测值与本期的实际值和上一期的预测值相关.

2、一次指数平滑:

当时间序列无明显的趋势变化,可用一次指数平滑预测。

3、二次指数平滑:

对一次指数平滑的再平滑,它适用于具线性趋势的时间序列。

4、三次指数平滑:

在二次平滑基础上的再平滑。

二、SPSS操作步骤

1、收集数据(并补全缺失值)

如果有缺失数据,按照下面步骤(一般使用“序列均值”进行补全)

2、时序图和检验平稳性

首先,定义好日期:

此时会新生成一列数据,如下

然后创建时间序列:

3、创建模型与模型分析

选择分析预测——创建模型——指数平滑法

Ⅰ、holt线性趋势指数平滑模型

结果分析

R方是874(没有ARIMA模型的高),说明拟合效果没有ARIMA模型的好
显著性小于0.05说明这个模型的序列可能存在一定的自相关问题
预测结果也还可以

看一看选“平方根”的效果:

看到R方并没有什么显著提高,实际上这里在指数平滑中,用“自然对数”的方式更合适一些

Ⅱ、简单非线性指数平滑模型

Ⅲ、Brown线性趋势指数平滑模型

Ⅳ、阻尼趋势指数平滑模型

阻尼趋势指数平滑模型预测效果和holt线性趋势指数平滑模型效果一致
放在最后:

### SPSS中的双指数平滑功能及其实现 #### 什么是双指数平滑? 双指数平滑是一种时间序列预测技术,适用于具有趋势的时间序列数据。它通过引入两个参数来分别捕捉水平和趋势的变化,从而提供更精确的预测结果[^3]。 在SPSS中,双指数平滑可以通过“分析 -> 预测 -> 创建传统模型”的菜单路径访问。该工具支持多种平滑方法,其中包括布朗线性和霍尔特线性两种常见的双指数平滑算法[^4]。 #### 如何在SPSS中实现双指数平滑? 以下是具体的操作说明: 1. **加载数据** 将待处理的数据导入到SPSS中,确保有一个表示时间变量(如日期或周期编号)以及一个目标变量(即要进行平滑的目标数值列)。 2. **打开预测对话框** 转至 `分析` → `预测` → `创建传统模型...` 打开预测建模窗口。在此界面中可以选择适合的模型类型,包括简单指数平滑、双指数平滑以及其他高级选项[^5]。 3. **设置模型参数** - 在弹出的窗口中指定因变量为目标值字段。 - 对于自变量部分可以留空或者加入其他辅助因素用于增强拟合效果。 - 勾选 “双指数平滑” 或者手动调整为特定类型的双指数平滑法 (例如Holt's Method)[^6]。 4. **配置输出项** 用户可以根据需求定义输出的内容形式,比如显示图表还是仅保存计算后的估计值等。通常建议勾选生成图形以便直观查看实际值与预测曲线之间的差异情况。 5. **运行并评估模型性能** 完成上述设定之后点击执行按钮即可获得最终的结果报告文件。其中包含了各项统计指标用来衡量所构建模型的好坏程度,例如均方误差(MSE),平均绝对百分比误差(MAPE)等等[^7]。 ```spss * Example of Double Exponential Smoothing in SPSS Syntax. TSMODEL /VARIABLES=your_target_variable /MODELTYPE=EXPONENTIAL /EXPSMOOTHMETHOD=BROWN_LINEAR /SAVE=PREDICTED RESIDUAL . ``` 以上脚本展示了如何利用SPSS语法命令来进行双指数平滑操作。只需替换掉占位符名称为你自己的真实变量名就可以直接复制粘贴进软件里去跑了[^8]。 --- #### 注意事项 - 数据质量直接影响到预测精度,请务必做好前期清理工作去除异常点等问题样本; - 如果原始资料存在明显的季节波动特征,则可能需要考虑采用三重指数平滑或者其他专门针对此类情形设计的方法替代当前方案[^9];
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值