【混合编程】Rust 调用 C 编译后的文件 rust 调用 c语言编译成的 dylib 文件,假设文件名为。rust 调用c,其中c返回一个int类型的数组,如何写代码。rust调用c的时候,返回的是一个指向结构体的指针。rust 调用c的时候,c返回的是结构体。rust 调用 c 的时候,入参是。rust 调用 c 的时候,入参是。rust 调用c的时候,传入。(指向一个字符串数组)toml 文件添加这个。
文本盲水印:把信息打入文字中 应用地址:https://www.guofei.site/pictures_for_blog/app/text_watermark/v1.html视频介绍:https://www.bilibili.com/video/BV1m3411s7kT项目地址:https://github.com/guofei9987/text_blind_watermark
仅用sql实现协同过滤算法 协同过滤(collaborative filtering)算法是一种入门级推荐算法,实现简单、可解释性强、效果尚可,有大量可调整的点。问题定义你的数据库里有一些打分记录了,你想算出更多的打分(红色的问号)算法步骤step1:确定基于user还是基于item。一般基于数量少的那个。例如,一个视频网站有上1万用户,50个视频,那么就基于item(视频)。 目的是计算出可信度高的相似矩阵,顺便减少计算量和存储量,这个案例中,只需要存储一个50×50的相似矩阵。step2:计算相似矩
80行代码实现一个图数据库 pygraphsA graph database based on Python纯Python实现的图数据库开发计划: 完备增删改查 改善复杂查询的体验 支持 CQL 语句使用文档初始化一个空的图数据库import pygraphs as pgG = pg.Graph()增增加节点# 从csv读取节点并加入图数据库G.add_vertexes_from_file(filename='Vertexes.csv')# 从list读取节点并加入图数据库vertexes_l
CQL语句汇总(neo4j) 安装配置用 docker 直接用docker run \ --publish=7474:7474 --publish=7687:7687 \ --volume=$HOME/neo4j/data:/data \ neo4jUI洁面: http://localhost:7474初始密码:neo4j/neo4j使用数据库create database movies:use movies创建数据CREATE ( <node-name>:&
Python 有约束的粒子群算法(PSO)的可视化动画 有(非线性)约束的粒子群算法,红色圆圈是约束有约束的PSO(粒子群算法)代码如下(参见 github):import numpy as npfrom sko.PSO import PSOdef demo_func(x): x1, x2 = x return -20 * np.exp(-0.2 * np.sqrt(0.5 * (x1 ** 2 + x2 ** 2))) - np.exp( 0.5 * (np.cos(2 * np.pi * x1) + n
隐写术(盲水印):从入门到出门 0. 前言我在做 Blind Watermark 这个库的时候,翻阅了大量材料,学到了关于隐写术、盲水印的很多知识,现在梳理了一遍,发出来。本文结构:简介:隐写术的应用场景、分类、特点隐写术:介绍几种巧妙的隐写术的算法隐写术的衡量指标:如何衡量算法的好坏隐写分析:如何攻击隐写算法1. 隐写术的简介应用场景:版权识别。数字水印可以提供所有权证据。用户识别或指纹。合法用户的身份嵌入水印,用于识别非法复制。保证图像不被篡改。如果水印设计成,对图像任何修改将破坏水印。自动监视。
图片隐水印的python库 blind-watermark基于傅里叶变换的数字盲水印文档: https://BlindWatermark.github.io/blind_watermark/#/zh/Source code: https://github.com/guofei9987/blind_watermarkinstallpip install blind-watermarkFor the current developer version:git clone git@github.com:guofei998
Python 数字图片盲水印 blind-watermark基于傅里叶变换的数字盲水印文档: https://BlindWatermark.github.io/blind_watermark/#/zh/Source code: https://github.com/guofei9987/blind_watermarkinstallpip install blind-watermarkFor the current developer version:git clone git@github.com:guofei998
ModuleNotFoundError: No module named 'sko' 解决办法 有时候python导入包时,会报下面这个错ModuleNotFoundError: No module named ‘sko’报错原因是没有安装 scikit-opt 这个包,安装就行了(详细安装方法来自 scikit-opt 官网)简单地安装步骤:打开命令提示行,执行下面的代码,稍等几秒就安装完毕。pip install scikit-opt运行之前的 Python 代码,Modu...
使用遗传算法进行曲线拟合 遗传算法可以做最优化,这是因为回归模型的算法关键是最优化,而遗传算法可以做最优化。例如,把残差当成目标函数,形如 :ming(a,b)=∑i=0n(f(xi;a,b)−yi)2\min g(a,b)=\sum\limits_{i=0}^n (f(x_i;a,b)-y_i)^2ming(a,b)=i=0∑n(f(xi;a,b)−yi)2然后针对a,b 做优化我们使用 scikit-o...